\qquad

Consider the linear function: $f(x)=6-2 x$

1. (3 points) Sketch the graph $y=f(x)$. Label the x - and y-intercepts with their coordinates.

2. (a) (2 points) Shade in the two triangles(s) on the graph corresponding the definite integral $\int_{0}^{5}(6-2 x) d x$ and label each triangle with its base, height, and area.

Solution: The triangle on the left, above the x-axis over the interval [0,3], clearly has height $h=6$ and base $b=3$, and hence its area is $A_{1}=\frac{1}{2}(3)(6)=9$. The triangle on the right, below the x-axis and along the interval $[3,5]$, has height $h=4$ and base $b=2$, and so its area is $A_{2}=\frac{1}{2}(2)(4)=4$.
(b) (2 points) Compute the value of the definite integral in terms of those areas:

Solution: The definite integral corresponds to the "net area" between $y=f(x)$ and the x-axis, i.e., the area of the right triangle A_{2} counts negatively for the definite integral since it is below the x-axis. Hence:

$$
\int_{0}^{5}(6-2 x) d x=A_{1}-A_{2}=9-4=5
$$

3. (3 points) Now evaluate the same definite integral using the Fundamental Theorem of Calculus (i.e., by finding and evaluating an antiderivative of $f(x)=6-2 x)$:

Solution:

$$
\int_{0}^{5}(6-2 x) d x=\left[6 x-x^{2}\right]_{0}^{5}=\left[6(5)-5^{2}\right]-\left[6(0)-0^{2}\right]=(30-25)-(0-0)=5
$$

(Extra credit!) What is the value of $\int_{0}^{5}|6-2 x| d x$? Explain how you arrive at your answer. You can also sketch the corresponding graph.

Solution: Recall that the absolute value just reflects the portions of the graph that are below the x-axis to above the x-axis:

Hence, the definite integral $\int_{0}^{5}|6-2 x| d x$ corresponds to the sum of the areas of the same two triangles as in \#2, but area of the triangle on the right, over the interval $[3,5]$, now counts positively since it is above the x-axis.

$$
\int_{0}^{5}|6-2 x| d x=9+4=13
$$

