For each of the following:

- write down "an appropriate" substitution u (for some of the exercises, u is given—use those exercises to understand why that choice of u works)
- find du by differentiating u
- \bullet make the substitution into the given integral to transform it into an integral in the new variable u
- \bullet find the general antiderivative with respect to u
- resubstitute to to get the antiderivative to the original integral in the original variable

$$1. \int (x-7)^3 dx = u = x-7$$

$$du =$$

$$2. \int \cos(\theta + \pi) \, d\theta =$$

$$u =$$

$$du =$$

$$3. \int 2t\sqrt{t^2+1}\,dt =$$

$$u = t^2 + 1$$

$$du =$$

$$4. \int \frac{(\ln x)^2}{x} \, dx =$$

$$u = \ln x$$

$$du =$$

$$5. \int \sin^2 \theta \cos \theta \, d\theta =$$

$$u = \sin \theta$$

$$du =$$

$$6. \int (4x+5)^9 dx$$

$$u = 4x + 5$$

$$du = 4 \, dx \Longrightarrow dx = \frac{1}{4} du$$

7.
$$\int \cos(5x) \, dx$$

$$u =$$

$$du =$$

$$8. \int xe^{x^2} dx$$

$$u = x^2$$

$$du =$$

$$9. \int \frac{dz}{(5-2z)^2}$$

$$u =$$

$$du =$$

$$10. \int \frac{x^2}{x^3 + 1} \, dx$$

$$u =$$

$$du =$$