\qquad

| Question: | $[1$ | 2 | $[3$ | 4 | 5 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Points: | 10 | 15 | 10 | 5 | 10 | 50 |
| Score: | | | | | | |

1. (10 points) Recall the following definitions:

Definition: A real number x is rational if there exist integers a and b such that $x=\frac{a}{b}$. A real number is irrational if it not rational.

Definition: An integer n is even if $n=2 k$ for some integer k. An integer n is odd if $n=2 k+1$ for some integer k.

Write out proofs of the following theorems. For each, clearly the state the assumption, the definition(s) used, and the conclusion, and show any necessary algebra.
a. Theorem: For any real number x, if x is rational and $x \neq 0$, then $1 / x$ is also rational.
(Hint: Provide a direct proof, i.e., start by assuming a given real number x is rational and non-zero.)

Proof:

b. Theorem: For any integer n, if n^{2} is even, then n must also be even.
(Hint: Provide a proof by contraposition. Hence, start by assuming a given integer n is not even, i.e., assume that n is odd.)
2. Let $A=\{1,2,3,4,5,6\}$ and $B=\{0,1\}$.
a. (5 points) List the elements of the following sets:
i. $A \cup B=$
ii. $A \cap B=$
iii. $A-B=$
iv. $B-A=$
v. $A \times B=$
vi. (Extra credit!) $\mathcal{P}(A) \cap \mathcal{P}(B)=$
b. (5 points) Draw a Venn diagram illustrating the sets A and B, representing all of their elements with points in the appropriate regions in the diagram.
c. (5 points) Consider the function $f: A \times A \rightarrow \mathbb{N}$ defined by the formula $f\left(a_{1}, a_{2}\right)=a_{1}+a_{2}$. (Note that we are still using $A=\{1,2,3,4,5,6\}$.)
i. What is the range of f ?
ii. Show that f is not a one-to-one function (i.e., find two distinct inputs in the domain $A \times A$ which get mapped by f to the same output in the range).
3. Consider the following definition:

Definition: If a and b are integers, we say that a divides b if there is an integer j such that $b=a * j$, or equivalently, if $\frac{b}{a}$ is an integer j. We also say a is a factor of b, and b is a multiple of a.

Examples: 3 divides 12 since $12 / 3=4$ is an integer, i.e., $12=3 * j$ for $j=4$. But 5 does not divide 12 , since $12 / 5$ is not an integer.
a. (5 points) Let $U=\{1,2,3,4,5,6,7,8,9,10,11,12\}$. List the elements of the following subsets of U :
i. $A=\{n \in U \mid 3$ divides $n\}=\{n \in U \mid n$ is a multiple of 3$\}=$
ii. $B=\{n \in U \mid n$ divides 12$\}=\{n \in U \mid n$ is a factor of 12$\}=$
b. (5 points) Provide a proof of the following theorem:

Theorem: If a divides b and a divides c, then a also divides $b+c$.
(Hint: Provide a direct proof, i.e., start by assuming a divides b and a divides c. Then apply the definition given above.)

Proof:

4. (5 points) Consider the following definition of a one-to-one function:

Definition: A function $f: A \longrightarrow B$ is one-to-one if and only if for any $a_{1}, a_{2} \in A, a_{1} \neq a_{2}$ implies $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
We can translate this definition into predicate logic as follows:
$\forall a_{1} \forall a_{2}\left[\left(a_{1} \in A \wedge a_{2} \in A \wedge a_{1} \neq a_{2}\right) \longrightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right)\right]$
a. What is the definition of an onto function? Give the definition in natural language, i.e., using words (as in the textbook!)

Definition: A function $f: A \longrightarrow B$ is onto if and only if \ldots
b. Now translate your natural language definition of f being onto into a statement of predicate logic, i.e., using quantifiers and logical connectives:
5. (10 points) Let $A=\{a, b, c\}$.
a. List the elements of the power set of A. (Hint: Since A has 3 elements, its power set has $2^{3}=8$ elements.)
$\mathcal{P}(A)=$
b. Construct a function $f: A \rightarrow \mathcal{P}(A)$ which has the following properties:

1. f is one-to-one, and
2. $\forall x \in A(x \in f(x))$
$f(a)=$
$f(b)=$
$f(c)=$
