$\qquad$

| Question: | 1 | 2 | Total |
| :--- | :---: | :---: | :---: |
| Points: | 5 | 10 | 15 |
| Score: |  |  |  |

Recall the formal definitions of even and odd integers:
Definition: An integer $n$ is even if $n=2 k$ for some integer $k$. An integer $n$ is odd if $n=2 k+1$ for some integer $k$.

1. (5 points) Prove that the sum of two odd integers is even.
(Hint: use a direct proof to prove "If $m$ and $n$ are both odd integers, then $m+n$ is an even integer.")

## Proof:

## Solution:

(For a direct proof, we assume the antecedent-in this case that $m$ and $n$ are odd integers-and proceed to prove the consequence-that that implies $m * n$ is also odd.)
Take any two odd integers $m$ and $n$. By definition of being odd, $m=2 k+1$ and $n=2 j+1$ for integers $j, k$. (Note that since $m$ and $n$ may be different odd integers, we must assume two different representations of those odd integers, $2 k+1$ and $2 j+1$, respectively.)
Then $m+n=(2 k+1)+(2 j+1)=2 k+2 j+2=2(k+j+1)$, where $k+j+1$ is clearly an integer. Thus, $m+n$ fulfills the definition of being odd.
2. (10 points) Let's prove of the statement: "If $m * n$ is even, then either $m$ is even or $n$ is even."
a. We will provide a proof by contraposition. The statement is a conditional $p \longrightarrow q$, where the propositions are
$\qquad$
$p=$
Solution: $p=" m * n$ is even"
$q=" m$ is even or $n$ is even"
b. For a proof by contraposition, we will prove the logically equivalent contrapositive $\neg q \rightarrow \neg p$. Write down $\neg p$, and simplify $\neg q$ using DeMorgan's Law (and using the fact that " $m$ is not even" is logically equivalent to " $m$ is odd"):
$\qquad$
$\neg q=\neg(m$ is even or $n$ is even $)=$
Solution: $\neg p=" m * n$ is not even" $=" m * n$ is odd"
Applying DeMorgan's Law to formulate $\neg q$, we have:
$\neg q \equiv \neg(m$ is even or $n$ is even $) \equiv \neg(m$ is even $)$ and $\neg(n$ is even $) \equiv(m$ is odd) and ( $n$ is odd)
c. Now write out a direct proof of $\neg q \rightarrow \neg p$ :

## Proof:.

Solution: In general, for a proof by contraposition of a statement "if $p$, then $q$," we prove the logically equivalent contraposition "if $\neg q$, then $\neg p$."

Thus, for the statement "If $m * n$ is even, then either $m$ is even or $n$ is even", a proof by contraposition begins by assuming $\neg q$, i.e., it is not the case that either $m$ is even or $n$ is even, which we have shown is equivalent to assuming $m$ is odd and $n$ is odd. Then we must use that assumption to show $\neg p$, i.e., that $m * n$ is odd.

So the proof by contraposition is as follows (it's sufficient to just write this!):
For a proof by contraposition, assume $m$ and $n$ are both odd integers. By definition, $m=2 k+1$ and $n=2 j+1$ for integers $j, k$. Then

$$
m * n=(2 k+1)(2 j+1)=4 j k+2 j+2 k+1=2(2 j k+j+k)+1
$$

where $2 j k+j+k$ is clearly an integer. Thus, $m * n$ is odd. This proves the theorem.

