$$P - Q = \{\max(4 - 3, 0) \cdot a, \max(1 - 4, 0) \cdot b, \max(3 - 0, 0) \cdot c, \max(0 - 2, 0) \cdot d\}$$
$$= \{1 \cdot a, 0 \cdot b, 3 \cdot c, 0 \cdot d\} = \{1 \cdot a, 3 \cdot c\}, \text{ and}$$
$$P + Q = \{(4 + 3) \cdot a, (1 + 4) \cdot b, (3 + 0) \cdot c, (0 + 2) \cdot d\}$$

$$= \{7 \cdot a, 5 \cdot b, 3 \cdot c, 2 \cdot d\}.$$

Exercises

1. Let *A* be the set of students who live within one mile of school and let *B* be the set of students who walk to classes. Describe the students in each of these sets.

a) $A \cap B$	b) <i>A</i> ∪ <i>B</i>
c) $A - B$	d) <i>B</i> − <i>A</i>

- **2.** Suppose that *A* is the set of sophomores at your school and *B* is the set of students in discrete mathematics at your school. Express each of these sets in terms of *A* and *B*.
 - a) the set of sophomores taking discrete mathematics in your school
 - **b**) the set of sophomores at your school who are not taking discrete mathematics
 - c) the set of students at your school who either are sophomores or are taking discrete mathematics
 - d) the set of students at your school who either are not sophomores or are not taking discrete mathematics
- **3.** Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$. Find

	a) $A \cup B$.	b) $A \cap B$.
	c) $A - B$.	d) $B - A$.
4. Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f, g, h\}$. Fi		
	$a \rightarrow A + B$	\mathbf{h}) $\mathbf{h} = \mathbf{D}$

a)	$A \cup D$.	D)	$A \mid D$.
c)	A-B.	d)	B-A.

In Exercises 5–10 assume that A is a subset of some underlying universal set U.

- 5. Prove the complementation law in Table 1 by showing that $\overline{\overline{A}} = A$.
- **6.** Prove the identity laws in Table 1 by showing that **a**) $A \cup \emptyset = A$. **b**) $A \cap U = A$.
- 7. Prove the domination laws in Table 1 by showing that
 a) A ∪ U = U.
 b) A ∩ Ø = Ø.
- 8. Prove the idempotent laws in Table 1 by showing that
 a) A ∪ A = A.
 b) A ∩ A = A.
- 9. Prove the complement laws in Table 1 by showing that
 - **a**) $A \cup \overline{A} = U$. **b**) $A \cap \overline{A} = \emptyset$.
- 10. Show that

a) $A - \emptyset = A$. **b**) $\emptyset - A = \emptyset$.

11. Let *A* and *B* be sets. Prove the commutative laws from Table 1 by showing that

a) $A \cup B = B \cup A$.

b)
$$A \cap B = B \cap A$$

12. Prove the first absorption law from Table 1 by showing that if *A* and *B* are sets, then $A \cup (A \cap B) = A$.

- **13.** Prove the second absorption law from Table 1 by showing that if *A* and *B* are sets, then $A \cap (A \cup B) = A$.
- **14.** Find the sets A and B if $A B = \{1, 5, 7, 8\}, B A = \{2, 10\}, and <math>A \cap B = \{3, 6, 9\}.$
- **15.** Prove the second De Morgan law in Table 1 by showing that if A and B are sets, then $\overline{A \cup B} = \overline{A} \cap \overline{B}$
 - **a**) by showing each side is a subset of the other side.
 - **b**) using a membership table.
- **16.** Let *A* and *B* be sets. Show that
 - **a)** $(A \cap B) \subseteq A$. **b)** $A \subseteq (A \cup B)$.
 - c) $A B \subseteq A$. d) $A \cap (B A) = \emptyset$.
 - e) $A \cup (B A) = A \cup B$.
- **17.** Show that if A and B are sets in a universe U then $A \subseteq B$ if and only if $\overline{A} \cup B = U$.
- **18.** Given sets *A* and *B* in a universe *U*, draw the Venn diagrams of each of these sets.
 - a) $A \rightarrow B = \{x \in U \mid x \in A \rightarrow x \in B\}$
 - **b**) $A \leftrightarrow B = \{x \in U \mid x \in A \leftrightarrow x \in B\}$
- **19.** Show that if *A*, *B*, and *C* are sets, then $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$
 - a) by showing each side is a subset of the other side.
 - **b**) using a membership table.
- **20.** Let A, B, and C be sets. Show that
 - **a)** $(A \cup B) \subseteq (A \cup B \cup C).$
 - **b**) $(A \cap B \cap C) \subseteq (A \cap B)$.
 - c) $(A-B) C \subseteq A C$.
 - **d**) $(A C) \cap (C B) = \emptyset$.
 - e) $(B A) \cup (C A) = (B \cup C) A.$
- **21.** Show that if *A* and *B* are sets, then
 - a) $A B = A \cap \overline{B}$.
 - **b)** $(A \cap B) \cup (A \cap \overline{B}) = A$.
- **22.** Show that if *A* and *B* are sets with $A \subseteq B$, then
 - a) $A \cup B = B$.
 - **b**) $A \cap B = A$.
- **23.** Prove the first associative law from Table 1 by showing that if A, B, and C are sets, then $A \cup (B \cup C) = (A \cup B) \cup C$.
- **24.** Prove the second associative law from Table 1 by showing that if A, B, and C are sets, then $A \cap (B \cap C) = (A \cap B) \cap C$.
- **25.** Prove the first distributive law from Table 1 by showing that if *A*, *B*, and *C* are sets, then $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

26. Let A, B, and C be sets. Show that (A - B) - C = (A - C) - (B - C).

27. Let $A = \{0, 2, 4, 6, 8, 10\}$, $B = \{0, 1, 2, 3, 4, 5, 6\}$, and $C = \{4, 5, 6, 7, 8, 9, 10\}$. Find **a)** $A \cap B \cap C$. **b)** $A \cup B \cup C$.

c) $(A \cup B) \cap C$. d) $(A \cap B) \cup C$.

- 28. Draw the Venn diagrams for each of these combinations of the sets *A*, *B*, and *C*.
 a) A ∩ (B ∪ C)
 b) A ∩ B ∩ C
 c) (A − B) ∪ (A − C) ∪ (B − C)
- **29.** Draw the Venn diagrams for each of these combinations of the sets *A*, *B*, and *C*.

a)
$$A \cap (\overline{B} - \overline{C})$$

b) $(A \cap \overline{B}) \cup (A \cap \overline{C})$

30. Draw the Venn diagrams for each of these combinations of the sets *A*, *B*, *C*, and *D*.

a)
$$(A \cap B) \cup (C \cap D)$$

b) $\overline{A} \cup \overline{B} \cup \overline{C} \cup \overline{D}$
c) $A - (B \cap C \cap D)$

31. What can you say about the sets A and B if we know that

a) $A \cup B = A$?	b) $A \cap B = A$?
c) $A - B = A$?	d) $A \cap B = B \cap A$?
e) $A - B = B - A?$	

- **32.** Can you conclude that A = B if A, B, and C are sets such that
 - a) $A \cup C = B \cup C$? b) $A \cap C = B \cap C$? c) $A \cup C = B \cup C$ and $A \cap C = B \cap C$?
- **33.** Let *A* and *B* be subsets of a universal set *U*. Show that $A \subseteq B$ if and only if $\overline{B} \subseteq \overline{A}$.
- **34.** Let *A*, *B*, and *C* be sets. Use the identity $A B = A \cap \overline{B}$, which holds for any sets *A* and *B*, and the identities from Table 1 to show that $(A B) \cap (B C) \cap (A C) = \emptyset$.
- **35.** Let A, B, and C be sets. Use the identities in Table 1 to show that $(\overline{A \cup B}) \cap (\overline{B \cup C}) \cap (\overline{A \cup C}) = \overline{A} \cap \overline{B} \cap \overline{C}$.
- **36.** Prove or disprove that for all sets *A*, *B*, and *C*, we have **a)** $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
 - **b**) $A \times (B \cap C) = (A \times B) \cap (A \times C)$.
- **37.** Prove or disprove that for all sets *A*, *B*, and *C*, we have
 - a) $A \times (B C) = (A \times B) (A \times C).$ b) $A \times (B + C) = A \times (B + C)$
 - **b**) $\overline{A} \times (B \cup C) = \overline{A} \times (B \cup C).$

The symmetric difference of *A* and *B*, denoted by $A \oplus B$, is the set containing those elements in either *A* or *B*, but not in both *A* and *B*.

- **38.** Find the symmetric difference of {1, 3, 5} and {1, 2, 3}.
- **39.** Find the symmetric difference of the set of computer science majors at a school and the set of mathematics majors at this school.
- **40.** Draw a Venn diagram for the symmetric difference of the sets *A* and *B*.
- **41.** Show that $A \oplus B = (A \cup B) (A \cap B)$.
- **42.** Show that $A \oplus B = (A B) \cup (B A)$.
- **43.** Show that if A is a subset of a universal set U, then

a)
$$A \oplus A = \emptyset$$
.
b) $A \oplus \emptyset = A$.
c) $A \oplus U = \overline{A}$.
d) $A \oplus \overline{A} = U$.

44. Show that if A and B are sets, then

a) $A \oplus B = B \oplus A$. **b**) $(A \oplus B) \oplus B = A$.

- **45.** What can you say about the sets *A* and *B* if $A \oplus B = A$?
- *46. Determine whether the symmetric difference is associative; that is, if *A*, *B*, and *C* are sets, does it follow that $A \oplus (B \oplus C) = (A \oplus B) \oplus C$?
- *47. Suppose that A, B, and C are sets such that $A \oplus C = B \oplus C$. Must it be the case that A = B?
- **48.** If *A*, *B*, *C*, and *D* are sets, does it follow that $(A \oplus B) \oplus (C \oplus D) = (A \oplus C) \oplus (B \oplus D)$?
- **49.** If *A*, *B*, *C*, and *D* are sets, does it follow that $(A \oplus B) \oplus (C \oplus D) = (A \oplus D) \oplus (B \oplus C)$?
- **50.** Show that if *A* and *B* are finite sets, then $A \cup B$ is a finite set.
- **51.** Show that if A is an infinite set, then whenever B is a set, $A \cup B$ is also an infinite set.
- *52. Show that if A, B, and C are sets, then

$$\begin{split} |A\cup B\cup C| &= |A|+|B|+|C|-|A\cap B|\\ &-|A\cap C|-|B\cap C|+|A\cap B\cap C|. \end{split}$$

(This is a special case of the inclusion–exclusion principle, which will be studied in Chapter 8.)

53. Let
$$A_i = \{1, 2, 3, \dots, i\}$$
 for $i = 1, 2, 3, \dots$ Find

a)
$$\bigcup_{i=1}^{n} A_i$$
.
b) $\bigcap_{i=1}^{n} A_i$.
54. Let $A_i = \{\dots, -2, -1, 0, 1, \dots, i\}$. Find

a)
$$\bigcup_{i=1}^{i=1} A_i$$
. **b**) $\bigcap_{i=1}^{i=1} A_i$.

55. Let *A_i* be the set of all nonempty bit strings (that is, bit strings of length at least one) of length not exceeding *i*. Find

a)
$$\bigcup_{i=1}^{n} A_i$$
. **b**) $\bigcap_{i=1}^{n} A_i$.

- **56.** Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if for every positive integer *i*, **a**) $A_i = \{i, i+1, i+2, ...\}.$
 - **b**) $A_i^t = \{0, i\}.$
 - c) $A_i = (0, i)$, that is, the set of real numbers x with 0 < x < i.
 - **d**) $A_i = (i, \infty)$, that is, the set of real numbers x with x > i.
- **57.** Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if for every positive integer *i*,
 - a) $A_i = \{-i, -i + 1, \dots, -1, 0, 1, \dots, i 1, i\}.$
 - **b**) $A_i = \{-i, i\}.$
 - c) $A_i = [-i, i]$, that is, the set of real numbers x with $-i \le x \le i$.
 - **d**) $A_i = [i, \infty)$, that is, the set of real numbers x with $x \ge i$.
- **58.** Suppose that the universal set is $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Express each of these sets with bit strings where the *i*th bit in the string is 1 if *i* is in the set and 0 otherwise.
 - **a**) {3, 4, 5}
 - **b**) {1, 3, 6, 10}
 - $c) \{2, 3, 4, 7, 8, 9\}$