2.1.7 Using Set Notation with Quantifiers

Sometimes we restrict the domain of a quantified statement explicitly by making use of a particular notation. For example, $\forall x \in S(P(x))$ denotes the universal quantification of $P(x)$ over all elements in the set S. In other words, $\forall x \in S(P(x))$ is shorthand for $\forall x(x \in S \rightarrow P(x))$. Similarly, $\exists x \in S(P(x))$ denotes the existential quantification of $P(x)$ over all elements in S. That is, $\exists x \in S(P(x))$ is shorthand for $\exists x(x \in S \wedge P(x))$.

EXAMPLE 22 What do the statements $\forall x \in \mathbf{R}\left(x^{2} \geq 0\right)$ and $\exists x \in \mathbf{Z}\left(x^{2}=1\right)$ mean?
Solution: The statement $\forall x \in \mathbf{R}\left(x^{2} \geq 0\right)$ states that for every real number $x, x^{2} \geq 0$. This statement can be expressed as "The square of every real number is nonnegative." This is a true statement.

The statement $\exists x \in \mathbf{Z}\left(x^{2}=1\right)$ states that there exists an integer x such that $x^{2}=1$. This statement can be expressed as "There is an integer whose square is 1. ." This is also a true statement because $x=1$ is such an integer (as is -1).

2.1.8 Truth Sets and Quantifiers

We will now tie together concepts from set theory and from predicate logic. Given a predicate P, and a domain D, we define the truth set of P to be the set of elements x in D for which $P(x)$ is true. The truth set of $P(x)$ is denoted by $\{x \in D \mid P(x)\}$.

EXAMPLE 23 What are the truth sets of the predicates $P(x), Q(x)$, and $R(x)$, where the domain is the set of integers and $P(x)$ is " $|x|=1, " Q(x)$ is " $x^{2}=2, "$ and $R(x)$ is " $|x|=x$."

Solution: The truth set of $P,\{x \in \mathbf{Z}| | x \mid=1\}$, is the set of integers for which $|x|=1$. Because $|x|=1$ when $x=1$ or $x=-1$, and for no other integers x, we see that the truth set of P is the set $\{-1,1\}$.

The truth set of $Q,\left\{x \in \mathbf{Z} \mid x^{2}=2\right\}$, is the set of integers for which $x^{2}=2$. This is the empty set because there are no integers x for which $x^{2}=2$.

The truth set of $R,\{x \in \mathbf{Z}| | x \mid=x\}$, is the set of integers for which $|x|=x$. Because $|x|=x$ if and only if $x \geq 0$, it follows that the truth set of R is \mathbf{N}, the set of nonnegative integers.

Note that $\forall x P(x)$ is true over the domain U if and only if the truth set of P is the set U. Likewise, $\exists x P(x)$ is true over the domain U if and only if the truth set of P is nonempty.

Exercises

1. List the members of these sets.
a) $\left\{x \mid x\right.$ is a real number such that $\left.x^{2}=1\right\}$
b) $\{x \mid x$ is a positive integer less than 12\}
c) $\{x \mid x$ is the square of an integer and $x<100\}$
d) $\left\{x \mid x\right.$ is an integer such that $\left.x^{2}=2\right\}$
2. Use set builder notation to give a description of each of these sets.
a) $\{0,3,6,9,12\}$
b) $\{-3,-2,-1,0,1,2,3\}$
c) $\{m, n, o, p\}$
3. Which of the intervals $(0,5),(0,5],[0,5),[0,5],(1,4]$, $[2,3],(2,3)$ contains
a) 0 ?
b) 1 ?
c) 2 ?
d) 3 ?
e) 4 ?
f) 5 ?
4. For each of these intervals, list all its elements or explain why it is empty.
a) $[a, a]$
b) $[a, a)$
c) $(a, a]$
d) (a, a)
e) (a, b), where $a>b$
f) $[a, b]$, where $a>b$
5. For each of these pairs of sets, determine whether the first is a subset of the second, the second is a subset of the first, or neither is a subset of the other.
a) the set of airline flights from New York to New Delhi, the set of nonstop airline flights from New York to New Delhi
b) the set of people who speak English, the set of people who speak Chinese
c) the set of flying squirrels, the set of living creatures that can fly
6. For each of these pairs of sets, determine whether the first is a subset of the second, the second is a subset of the first, or neither is a subset of the other.
a) the set of people who speak English, the set of people who speak English with an Australian accent
b) the set of fruits, the set of citrus fruits
c) the set of students studying discrete mathematics, the set of students studying data structures
7. Determine whether each of these pairs of sets are equal.
a) $\{1,3,3,3,5,5,5,5,5\},\{5,3,1\}$
b) $\{\{1\}\},\{1,\{1\}\}$
c) $\emptyset,\{\emptyset\}$
8. Suppose that $A=\{2,4,6\}, B=\{2,6\}, C=\{4,6\}$, and $D=\{4,6,8\}$. Determine which of these sets are subsets of which other of these sets.
9. For each of the following sets, determine whether 2 is an element of that set.
a) $\{x \in \mathbf{R} \mid x$ is an integer greater than 1$\}$
b) $\{x \in \mathbf{R} \mid x$ is the square of an integer $\}$
c) $\{2,\{2\}\}$
d) $\{\{2\},\{\{2\}\}\}$
e) $\{\{2\},\{2,\{2\}\}\}$
f) $\{\{\{2\}\}\}$
10. For each of the sets in Exercise 9, determine whether $\{2\}$ is an element of that set.
11. Determine whether each of these statements is true or false.
a) $0 \in \emptyset$
b) $\emptyset \in\{0\}$
c) $\{0\} \subset \emptyset$
d) $\emptyset \subset\{0\}$
e) $\{0\} \in\{0\}$
f) $\{0\} \subset\{0\}$
g) $\{\emptyset\} \subseteq\{\emptyset\}$
12. Determine whether these statements are true or false.
a) $\emptyset \in\{\emptyset\}$
b) $\emptyset \in\{\emptyset,\{\emptyset\}\}$
c) $\{\emptyset\} \in\{\emptyset\}$
d) $\{\emptyset\} \in\{\{\emptyset\}\}$
e) $\{\emptyset\} \subset\{\emptyset,\{\emptyset\}\}$
f) $\{\{\emptyset\}\} \subset\{\emptyset,\{\emptyset\}\}$
g) $\{\{\varnothing\}\} \subset\{\{\emptyset\},\{\emptyset\}\}$
13. Determine whether each of these statements is true or false.
a) $x \in\{x\}$
b) $\{x\} \subseteq\{x\}$
c) $\{x\} \in\{x\}$
d) $\{x\} \in\{\{x\}\}$
e) $\emptyset \subseteq\{x\}$
f) $\emptyset \in\{x\}$
14. Use a Venn diagram to illustrate the subset of odd integers in the set of all positive integers not exceeding 10 .
15. Use a Venn diagram to illustrate the set of all months of the year whose names do not contain the letter R in the set of all months of the year.
16. Use a Venn diagram to illustrate the relationship $A \subseteq B$ and $B \subseteq C$.
17. Use a Venn diagram to illustrate the relationships $A \subset B$ and $B \subset C$.
18. Use a Venn diagram to illustrate the relationships $A \subset B$ and $A \subset C$.
19. Suppose that A, B, and C are sets such that $A \subseteq B$ and $B \subseteq C$. Show that $A \subseteq C$.
20. Find two sets A and B such that $A \in B$ and $A \subseteq B$.
21. What is the cardinality of each of these sets?
a) $\{a\}$
b) $\{\{a\}\}$
c) $\{a,\{a\}\}$
d) $\{a,\{a\},\{a,\{a\}\}\}$
22. What is the cardinality of each of these sets?
a) \emptyset
b) $\{\emptyset\}$
c) $\{\emptyset,\{\emptyset\}\}$
d) $\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}$
23. Find the power set of each of these sets, where a and b are distinct elements.
a) $\{a\}$
b) $\{a, b\}$
c) $\{\emptyset,\{\emptyset\}\}$
24. Can you conclude that $A=B$ if A and B are two sets with the same power set?
25. How many elements does each of these sets have where a and b are distinct elements?
a) $\mathcal{P}(\{a, b,\{a, b\}\})$
b) $\mathcal{P}(\{\emptyset, a,\{a\},\{\{a\}\}\})$
c) $\mathcal{P}(\mathcal{P}(\emptyset))$
26. Determine whether each of these sets is the power set of a set, where a and b are distinct elements.
a) \emptyset
b) $\{\emptyset,\{a\}\}$
c) $\{\emptyset,\{a\},\{\emptyset, a\}\}$
d) $\{\emptyset,\{a\},\{b\},\{a, b\}\}$
27. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ if and only if $A \subseteq B$.
28. Show that if $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$
29. Let $A=\{a, b, c, d\}$ and $B=\{y, z\}$. Find
a) $A \times B$.
b) $B \times A$.
30. What is the Cartesian product $A \times B$, where A is the set of courses offered by the mathematics department at a university and B is the set of mathematics professors at this university? Give an example of how this Cartesian product can be used.
31. What is the Cartesian product $A \times B \times C$, where A is the set of all airlines and B and C are both the set of all cities in the United States? Give an example of how this Cartesian product can be used.
32. Suppose that $A \times B=\emptyset$, where A and B are sets. What can you conclude?
33. Let A be a set. Show that $\emptyset \times A=A \times \emptyset=\emptyset$.
34. Let $A=\{a, b, c\}, B=\{x, y\}$, and $C=\{0,1\}$. Find
a) $A \times B \times C$.
b) $C \times B \times A$.
c) $C \times A \times B$.
d) $B \times B \times B$.
35. Find A^{2} if
a) $A=\{0,1,3\}$.
b) $A=\{1,2, a, b\}$.
36. Find A^{3} if
a) $A=\{a\}$.
b) $A=\{0, a\}$.
37. How many different elements does $A \times B$ have if A has m elements and B has n elements?
38. How many different elements does $A \times B \times C$ have if A has m elements, B has n elements, and C has p elements?
