Making mistakes in proofs is part of the learning process. When you make a mistake that someone else finds, you should carefully analyze where you went wrong and make sure that you do not make the same mistake again. Even professional mathematicians make mistakes in proofs. More than a few incorrect proofs of important results have fooled people for many years before subtle errors in them were found.

1.7.9 Just a Beginning

We have now developed a basic arsenal of proof methods. In the next section we will introduce other important proof methods. We will also introduce several important proof techniques in Chapter 5, including mathematical induction, which can be used to prove results that hold for all positive integers. In Chapter 6 we will introduce the notion of combinatorial proofs.

In this section we introduced several methods for proving theorems of the form $\forall x(P(x) \rightarrow$ $Q(x)$), including direct proofs and proofs by contraposition. There are many theorems of this type whose proofs are easy to construct by directly working through the hypotheses and definitions of the terms of the theorem. However, it is often difficult to prove a theorem without resorting to a clever use of a proof by contraposition or a proof by contradiction, or some other proof technique. In Section 1.8 we will address proof strategy. We will describe various approaches that can be used to find proofs when straightforward approaches do not work. Constructing proofs is an art that can be learned only through experience, including writing proofs, having your proofs critiqued, and reading and analyzing other proofs.

Exercises

1. Use a direct proof to show that the sum of two odd integers is even.
2. Use a direct proof to show that the sum of two even integers is even.
3. Show that the square of an even number is an even number using a direct proof.
4. Show that the additive inverse, or negative, of an even number is an even number using a direct proof.
5. Prove that if $m+n$ and $n+p$ are even integers, where m, n, and p are integers, then $m+p$ is even. What kind of proof did you use?
6. Use a direct proof to show that the product of two odd numbers is odd.
7. Use a direct proof to show that every odd integer is the difference of two squares. [Hint: Find the difference of the squares of $k+1$ and k where k is a positive integer.]
8. Prove that if n is a perfect square, then $n+2$ is not a perfect square.
9. Use a proof by contradiction to prove that the sum of an irrational number and a rational number is irrational.
10. Use a direct proof to show that the product of two rational numbers is rational.
11. Prove or disprove that the product of two irrational numbers is irrational.
12. Prove or disprove that the product of a nonzero rational number and an irrational number is irrational.
13. Prove that if x is irrational, then $1 / x$ is irrational.
14. Prove that if x is rational and $x \neq 0$, then $1 / x$ is rational.
15. Prove that if x is an irrational number and $x>0$, then \sqrt{x} is also irrational.
16. Prove that if x, y, and z are integers and $x+y+z$ is odd, then at least one of x, y, and z is odd.
17. Use a proof by contraposition to show that if $x+y \geq 2$, where x and y are real numbers, then $x \geq 1$ or $y \geq 1$.
[18. Prove that if m and n are integers and $m n$ is even, then m is even or n is even.
18. Show that if n is an integer and $n^{3}+5$ is odd, then n is even using
a) a proof by contraposition.
b) a proof by contradiction.
19. Prove that if n is an integer and $3 n+2$ is even, then n is even using
a) a proof by contraposition.
b) a proof by contradiction.
20. Prove the proposition $P(0)$, where $P(n)$ is the proposition "If n is a positive integer greater than 1 , then $n^{2}>n$." What kind of proof did you use?
21. Prove the proposition $P(1)$, where $P(n)$ is the proposition "If n is a positive integer, then $n^{2} \geq n$." What kind of proof did you use?
22. Let $P(n)$ be the proposition "If a and b are positive real numbers, then $(a+b)^{n} \geq a^{n}+b^{n}$." Prove that $P(1)$ is true. What kind of proof did you use?
23. Show that if you pick three socks from a drawer containing just blue socks and black socks, you must get either a pair of blue socks or a pair of black socks.
