a) Quixote Media had the largest annual revenue.
b) Nadir Software had the lowest net profit and Acme Computer had the largest annual revenue.
c) Acme Computer had the largest net profit or Quixote Media had the largest net profit.
d) If Quixote Media had the smallest net profit, then Acme Computer had the largest annual revenue.
e) Nadir Software had the smallest net profit if and only if Acme Computer had the largest annual revenue.
10. Let p and q be the propositions p : I bought a lottery ticket this week. q : I won the million dollar jackpot.
Express each of these propositions as an English sentence.
a) $\neg p$
b) $p \vee q$
c) $p \rightarrow q$
d) $p \wedge q$
e) $p \leftrightarrow q$
f) $\neg p \rightarrow \neg q$
g) $\neg p \wedge \neg q$
h) $\neg p \vee(p \wedge q)$
11. Let p and q be the propositions "Swimming at the New Jersey shore is allowed" and "Sharks have been spotted near the shore," respectively. Express each of these compound propositions as an English sentence.
a) $\neg q$
b) $p \wedge q$
c) $\neg p \vee q$
d) $p \rightarrow \neg q$
e) $\neg q \rightarrow p$
f) $\neg p \rightarrow \neg q$
g) $p \leftrightarrow \neg q$
h) $\neg p \wedge(p \vee \neg q)$
12. Let p and q be the propositions "The election is decided" and "The votes have been counted," respectively. Express each of these compound propositions as an English sentence.
a) $\neg p$
b) $p \vee q$
c) $\neg p \wedge q$
d) $q \rightarrow p$
e) $\neg q \rightarrow \neg p$
f) $\neg p \rightarrow \neg q$
g) $p \leftrightarrow q$
h) $\neg q \vee(\neg p \wedge q)$
13. Let p and q be the propositions
p : It is below freezing.
q : It is snowing.
Write these propositions using p and q and logical connectives (including negations).
a) It is below freezing and snowing.
b) It is below freezing but not snowing.
c) It is not below freezing and it is not snowing.
d) It is either snowing or below freezing (or both).
e) If it is below freezing, it is also snowing.
f) Either it is below freezing or it is snowing, but it is not snowing if it is below freezing.
g) That it is below freezing is necessary and sufficient for it to be snowing.
14. Let p, q, and r be the propositions
p : You have the flu.
q : You miss the final examination.
r : You pass the course.
Express each of these propositions as an English sentence.
a) $p \rightarrow q$
b) $\neg q \leftrightarrow r$
c) $q \rightarrow \neg r$
d) $p \vee q \vee r$
e) $(p \rightarrow \neg r) \vee(q \rightarrow \neg r)$
f) $(p \wedge q) \vee(\neg q \wedge r)$
15. Let p and q be the propositions
p : You drive over 65 miles per hour.
q : You get a speeding ticket.
Write these propositions using p and q and logical connectives (including negations).
a) You do not drive over 65 miles per hour.
b) You drive over 65 miles per hour, but you do not get a speeding ticket.
c) You will get a speeding ticket if you drive over 65 miles per hour.
d) If you do not drive over 65 miles per hour, then you will not get a speeding ticket.
e) Driving over 65 miles per hour is sufficient for getting a speeding ticket.
f) You get a speeding ticket, but you do not drive over 65 miles per hour.
g) Whenever you get a speeding ticket, you are driving over 65 miles per hour.
16. Let p, q, and r be the propositions
p : You get an A on the final exam.
q : You do every exercise in this book.
r : You get an A in this class.
Write these propositions using p, q, and r and logical connectives (including negations).
a) You get an A in this class, but you do not do every exercise in this book.
b) You get an A on the final, you do every exercise in this book, and you get an A in this class.
c) To get an A in this class, it is necessary for you to get an A on the final.
d) You get an A on the final, but you don't do every exercise in this book; nevertheless, you get an A in this class.
e) Getting an A on the final and doing every exercise in this book is sufficient for getting an A in this class.
f) You will get an A in this class if and only if you either do every exercise in this book or you get an A on the final.
17. Let p, q, and r be the propositions
p : Grizzly bears have been seen in the area.
q : Hiking is safe on the trail.
r : Berries are ripe along the trail.
Write these propositions using p, q, and r and logical connectives (including negations).
a) Berries are ripe along the trail, but grizzly bears have not been seen in the area.
b) Grizzly bears have not been seen in the area and hiking on the trail is safe, but berries are ripe along the trail.
c) If berries are ripe along the trail, hiking is safe if and only if grizzly bears have not been seen in the area.
d) It is not safe to hike on the trail, but grizzly bears have not been seen in the area and the berries along the trail are ripe.
e) For hiking on the trail to be safe, it is necessary but not sufficient that berries not be ripe along the trail and for grizzly bears not to have been seen in the area.
f) Hiking is not safe on the trail whenever grizzly bears have been seen in the area and berries are ripe along the trail.
18. Determine whether these biconditionals are true or false.
a) $2+2=4$ if and only if $1+1=2$.
b) $1+1=2$ if and only if $2+3=4$.
c) $1+1=3$ if and only if monkeys can fly.
d) $0>1$ if and only if $2>1$.
19. Determine whether each of these conditional statements is true or false.
a) If $1+1=2$, then $2+2=5$.
b) If $1+1=3$, then $2+2=4$.
c) If $1+1=3$, then $2+2=5$.
d) If monkeys can fly, then $1+1=3$.
20. Determine whether each of these conditional statements is true or false.
a) If $1+1=3$, then unicorns exist.
b) If $1+1=3$, then dogs can fly.
c) If $1+1=2$, then dogs can fly.
d) If $2+2=4$, then $1+2=3$.
21. For each of these sentences, determine whether an inclusive or, or an exclusive or, is intended. Explain your answer.
a) Coffee or tea comes with dinner.
b) A password must have at least three digits or be at least eight characters long.
c) The prerequisite for the course is a course in number theory or a course in cryptography.
d) You can pay using U.S. dollars or euros.
22. For each of these sentences, determine whether an inclusive or, or an exclusive or, is intended. Explain your answer.
a) Experience with C++ or Java is required.
b) Lunch includes soup or salad.
c) To enter the country you need a passport or a voter registration card.
d) Publish or perish.
23. For each of these sentences, state what the sentence means if the logical connective or is an inclusive or (that is, a disjunction) versus an exclusive or. Which of these meanings of or do you think is intended?
a) To take discrete mathematics, you must have taken calculus or a course in computer science.
b) When you buy a new car from Acme Motor Company, you get $\$ 2000$ back in cash or a 2% car loan.
c) Dinner for two includes two items from column A or three items from column B.
d) School is closed if more than two feet of snow falls or if the wind chill is below $-100^{\circ} \mathrm{F}$.
24. Write each of these statements in the form "if p, then q " in English. [Hint: Refer to the list of common ways to express conditional statements provided in this section.]
a) It is necessary to wash the boss's car to get promoted.
b) Winds from the south imply a spring thaw.
c) A sufficient condition for the warranty to be good is that you bought the computer less than a year ago.
d) Willy gets caught whenever he cheats.
e) You can access the website only if you pay a subscription fee.
f) Getting elected follows from knowing the right people.
g) Carol gets seasick whenever she is on a boat.
25. Write each of these statements in the form "if p, then q " in English. [Hint: Refer to the list of common ways to express conditional statements.]
a) It snows whenever the wind blows from the northeast.
b) The apple trees will bloom if it stays warm for a week.
c) That the Pistons win the championship implies that they beat the Lakers.
d) It is necessary to walk eight miles to get to the top of Long's Peak.
e) To get tenure as a professor, it is sufficient to be world famous.
f) If you drive more than 400 miles, you will need to buy gasoline.
g) Your guarantee is good only if you bought your CD player less than 90 days ago.
h) Jan will go swimming unless the water is too cold.
i) We will have a future, provided that people believe in science.
26. Write each of these statements in the form "if p, then q " in English. [Hint: Refer to the list of common ways to express conditional statements provided in this section.]
a) I will remember to send you the address only if you send me an e-mail message.
b) To be a citizen of this country, it is sufficient that you were born in the United States.
c) If you keep your textbook, it will be a useful reference in your future courses.
d) The Red Wings will win the Stanley Cup if their goalie plays well.
e) That you get the job implies that you had the best credentials.
f) The beach erodes whenever there is a storm.
g) It is necessary to have a valid password to \log on to the server.
h) You will reach the summit unless you begin your climb too late.
i) You will get a free ice cream cone, provided that you are among the first 100 customers tomorrow.
27. Write each of these propositions in the form " p if and only if $q "$ in English.
a) If it is hot outside you buy an ice cream cone, and if you buy an ice cream cone it is hot outside.
b) For you to win the contest it is necessary and sufficient that you have the only winning ticket.
c) You get promoted only if you have connections, and you have connections only if you get promoted.
d) If you watch television your mind will decay, and conversely.
e) The trains run late on exactly those days when I take it.
28. Write each of these propositions in the form " p if and only if $q "$ in English.
a) For you to get an A in this course, it is necessary and sufficient that you learn how to solve discrete mathematics problems.
b) If you read the newspaper every day, you will be informed, and conversely.
c) It rains if it is a weekend day, and it is a weekend day if it rains.
d) You can see the wizard only if the wizard is not in, and the wizard is not in only if you can see him.
e) My airplane flight is late exactly when I have to catch a connecting flight.
29. State the converse, contrapositive, and inverse of each of these conditional statements.
a) If it snows today, I will ski tomorrow.
b) I come to class whenever there is going to be a quiz.
c) A positive integer is a prime only if it has no divisors other than 1 and itself.
30. State the converse, contrapositive, and inverse of each of these conditional statements.
a) If it snows tonight, then I will stay at home.
b) I go to the beach whenever it is a sunny summer day.
c) When I stay up late, it is necessary that I sleep until noon.
31. How many rows appear in a truth table for each of these compound propositions?
a) $p \rightarrow \neg p$
b) $(p \vee \neg r) \wedge(q \vee \neg s)$
c) $q \vee p \vee \neg s \vee \neg r \vee \neg t \vee u$
d) $(p \wedge r \wedge t) \leftrightarrow(q \wedge t)$
32. How many rows appear in a truth table for each of these compound propositions?
a) $(q \rightarrow \neg p) \vee(\neg p \rightarrow \neg q)$
b) $(p \vee \neg t) \wedge(p \vee \neg s)$
c) $(p \rightarrow r) \vee(\neg s \rightarrow \neg t) \vee(\neg u \rightarrow v)$
d) $(p \wedge r \wedge s) \vee(q \wedge t) \vee(r \wedge \neg t)$
33. Construct a truth table for each of these compound propositions.
a) $p \wedge \neg p$
b) $p \vee \neg p$
c) $(p \vee \neg q) \rightarrow q$
d) $(p \vee q) \rightarrow(p \wedge q)$
e) $(p \rightarrow q) \leftrightarrow(\neg q \rightarrow \neg p)$
f) $(p \rightarrow q) \rightarrow(q \rightarrow p)$
34. Construct a truth table for each of these compound propositions.
a) $p \rightarrow \neg p$
b) $p \leftrightarrow \neg p$
c) $p \oplus(p \vee q)$
d) $(p \wedge q) \rightarrow(p \vee q)$
e) $(q \rightarrow \neg p) \leftrightarrow(p \leftrightarrow q)$
f) $(p \leftrightarrow q) \oplus(p \leftrightarrow \neg q)$
35. Construct a truth table for each of these compound propositions.
a) $(p \vee q) \rightarrow(p \oplus q)$
b) $(p \oplus q) \rightarrow(p \wedge q)$
c) $(p \vee q) \oplus(p \wedge q)$
d) $(p \leftrightarrow q) \oplus(\neg p \leftrightarrow q)$
e) $(p \leftrightarrow q) \oplus(\neg p \leftrightarrow \neg r)$
f) $(p \oplus q) \rightarrow(p \oplus \neg q)$
36. Construct a truth table for each of these compound propositions.
a) $p \oplus p$
b) $p \oplus \neg p$
c) $p \oplus \neg q$
d) $\neg p \oplus \neg q$
e) $(p \oplus q) \vee(p \oplus \neg q)$
f) $(p \oplus q) \wedge(p \oplus \neg q)$
37. Construct a truth table for each of these compound propositions.
a) $p \rightarrow \neg q$
b) $\neg p \leftrightarrow q$
c) $(p \rightarrow q) \vee(\neg p \rightarrow q)$
d) $(p \rightarrow q) \wedge(\neg p \rightarrow q)$
e) $(p \leftrightarrow q) \vee(\neg p \leftrightarrow q)$
f) $(\neg p \leftrightarrow \neg q) \leftrightarrow(p \leftrightarrow q)$
38. Construct a truth table for each of these compound propositions.
a) $(p \vee q) \vee r$
b) $(p \vee q) \wedge r$
c) $(p \wedge q) \vee r$
d) $(p \wedge q) \wedge r$
e) $(p \vee q) \wedge \neg r$
f) $(p \wedge q) \vee \neg r$
39. Construct a truth table for each of these compound propositions.
a) $p \rightarrow(\neg q \vee r)$
b) $\neg p \rightarrow(q \rightarrow r)$
c) $(p \rightarrow q) \vee(\neg p \rightarrow r)$
d) $(p \rightarrow q) \wedge(\neg p \rightarrow r)$
e) $(p \leftrightarrow q) \vee(\neg q \leftrightarrow r)$
f) $(\neg p \leftrightarrow \neg q) \leftrightarrow(q \leftrightarrow r)$
40. Construct a truth table for $((p \rightarrow q) \rightarrow r) \rightarrow s$.
41. Construct a truth table for $(p \leftrightarrow q) \leftrightarrow(r \leftrightarrow s)$.
$[$ 42. Explain, without using a truth table, why $(p \vee \neg q) \wedge$ $(q \vee \neg r) \wedge(r \vee \neg p)$ is true when p, q, and r have the same truth value and it is false otherwise.
\longleftarrow 43. Explain, without using a truth table, why $(p \vee q \vee r) \wedge$ $(\neg p \vee \neg q \vee \neg r)$ is true when at least one of p, q, and r is true and at least one is false, but is false when all three variables have the same truth value.
44. If $p_{1}, p_{2}, \ldots, p_{n}$ are n propositions, explain why

$$
\bigwedge_{i=1}^{n-1} \bigwedge_{j=i+1}^{n}\left(\neg p_{i} \vee \neg p_{j}\right)
$$

is true if and only if at most one of $p_{1}, p_{2}, \ldots, p_{n}$ is true.
45. Use Exercise 44 to construct a compound proposition that is true if and only if exactly one of the propositions $p_{1}, p_{2}, \ldots, p_{n}$ is true. [Hint: Combine the compound proposition in Exercise 44 and a compound proposition that is true if and only if at least one of $p_{1}, p_{2}, \ldots, p_{n}$ is true.]
46. What is the value of x after each of these statements is encountered in a computer program, if $x=1$ before the statement is reached?
a) if $x+2=3$ then $x:=x+1$
b) if $(x+1=3)$ OR $(2 x+2=3)$ then $x:=x+1$
c) if $(2 x+3=5)$ AND $(3 x+4=7)$ then $x:=x+1$
d) if $(x+1=2) \operatorname{XOR}(x+2=3)$ then $x:=x+1$
e) if $x<2$ then $x:=x+1$
47. Find the bitwise $O R$, bitwise $A N D$, and bitwise $X O R$ of each of these pairs of bit strings.
a) 1011110,0100001
b) 11110000,10101010
c) 0001110001,1001001000
d) 1111111111,0000000000

