1. Evaluate each determinant. Show complete work.
(a) $\left|\begin{array}{ccc}3 & -2 & 1 \\ 3 & -1 & -2 \\ 3 & -2 & -3\end{array}\right|$
(b) $\left|\begin{array}{ccc}3 & 4 & 5 \\ -4 & 6 & 3 \\ 1 & -4 & 3\end{array}\right|$
(c) $\left|\begin{array}{lll}0 & \mathrm{a} & \mathrm{b} \\ 0 & \mathrm{c} & \mathrm{d} \\ 0 & \mathrm{x} & \mathrm{y}\end{array}\right|$
2. Use row operations to show that the determinants are all zero.
(a) $\left|\begin{array}{lll}12 & 13 & 14 \\ 15 & 16 & 17 \\ 18 & 19 & 20\end{array}\right|$
(b) $\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{b}+\mathrm{c} \\ 1 & \mathrm{~b} & \mathrm{a}+\mathrm{c} \\ 1 & \mathrm{c} & \mathrm{a}+\mathrm{b}\end{array}\right|$
3. What value of x makes the determinant -4 ?
$\left|\begin{array}{ccc}-2 & 0 & 0 \\ -6 & x & 1 \\ -4 & 0 & -1\end{array}\right|$
4. Find whether the following matrix is invertible or not. Singular or non-singular? Do not find the inverse. Show your work.
$\left|\begin{array}{cccc}2 & 4 & 1 & 2 \\ -3 & 0 & 0 & 0 \\ 1 & 3 & 2 & 1 \\ -2 & 9 & 3 & 1\end{array}\right|$
5. Let A and B be 4 x 4 matrices with $\operatorname{det}(\mathrm{A})=-1$ and $\operatorname{det}(\mathrm{B})=2$. Then compute
(a) $\operatorname{det}(\mathrm{AB})$
(b) $\operatorname{det}\left(B^{5}\right)$
(c) $\operatorname{det}(2 \mathrm{~A})$
(d) $\operatorname{det}\left(\mathrm{A}^{\mathrm{T}} \mathrm{A}\right)$
(e) $\operatorname{det}\left(\mathrm{B}^{-1} \mathrm{AB}\right)$
(f) $\operatorname{det}(A B)^{T}$
6. True or False. Explain your answer mathematically.
(a) If A is invertible and 1 is an eigenvalue for A , then 1 is an eigenvalue for A^{-1}.
(b) Each eigenvalue of A is also an eigenvalue of A^{2}.
(c) Two eigenvectors corresponding to the same eigenvalue are always linearly dependent.
7. Find the eigenvalues of the following matrices.
(a) $\left[\begin{array}{ccc}3 & -2 & 8 \\ 0 & 5 & -2 \\ 0 & -4 & 3\end{array}\right]$
(b) $\left[\begin{array}{cccc}1 & 5 & -6 & -7 \\ 2 & 4 & 5 & 2 \\ 0 & 0 & -7 & -4 \\ 0 & 0 & 3 & 1\end{array}\right]$
8. Let $\mathrm{A}=\left(\begin{array}{ll}\mathrm{a}_{11} & \mathrm{a}_{12} \\ \mathrm{a}_{21} & \mathrm{a}_{22}\end{array}\right)$. Show that the characteristic polynomial of A is

$$
\lambda^{2}-(\text { trace } \mathrm{A}) \lambda+\operatorname{det}(\mathrm{A}) .
$$

9, Construct bases for the column space and the null space of the given matrix. Justify your answer.

$$
A=\left[\begin{array}{ccccc}
5 & 3 & 2 & -6 & -8 \\
4 & 1 & 3 & -8 & -7 \\
5 & 1 & 4 & 5 & 19 \\
-7 & -5 & -2 & 8 & 5
\end{array}\right]
$$

