\qquad

Solve the following system of 3 linear equations in 3 variables:

$$
\begin{align*}
-2 x+5 y+z & =8 \tag{1}\\
x-2 y-3 z & =-13 \tag{2}\\
x+3 y-z & =5 \tag{3}
\end{align*}
$$

1. Choose a pair of equations, and eliminate one of the variables by using the addition method.
(Hint: You can eliminate z by adding equations (1) and (3)!)

Solution: Add equations (1) and (3) in order to eliminate z :

$$
\begin{aligned}
-2 x+5 y+z= & 8 \\
x+3 y-z= & 5 \\
\hline-x+8 y= & 13
\end{aligned}
$$

Note: it's also possible to start with a different pair of equations and/or eliminate a variable other z, but the algebra is more complicated.
2. Choose a different pair of equations, and eliminate the same variable:

Solution: Add 3 times equation (1) to equation (2) in order to eliminate z :

$$
\begin{aligned}
-6 x+15 y+3 z= & 24 \\
x-2 y-3 z= & -13 \\
\hline-5 x+13 y= & 11
\end{aligned}
$$

Note: it's also possible to use equations (2) and (3).
3. Solve the resulting system of 2 equations in 2 variables:

Solution: Multiply through the equation from step 1 by -5 and add to equation from step 2 :

$$
\begin{array}{rlr}
5 x-40 y & =-65 \\
-5 x+13 y & =11 \\
\hline-27 y & =-54
\end{array}
$$

So $y=2$. Plug this into either equation above to solve for x, e.g., substituting $y=2$ into the 2 nd equation:

$$
-5 x+13(2)=11 \Longrightarrow-5 x=-15 \Longrightarrow x=3
$$

4. Plug the values of the 2 variables you solved for above into any of the 3 original equations, and solve for the 3rd variable:

Solution: Substituting $x=3$ and $y=2$ into equation (1):

$$
-2(3)+5(2)+z=8 \Longrightarrow-6+10+z=8 \Longrightarrow z=4
$$

5. Check the solution by substituting your values for (x, y, z) into each of the original equations:

Solution: Substitute $x=3, y=2$, and $z=4$ into each of equations (1), (2), and (3) and verify that the RHS equals the LHS.

