1. (10 points) Shown is the graph of the function $f(x) = \frac{x-2}{x^2+2x-3}$:

(a) Compute the following values of f (show your calculations), and label the corresponding points with their coordinates on the graph above:

Solution:

- $f(0) = \frac{0-2}{0+0-3} = \frac{2}{3}$ (so plot (0,2/3) on the graph)
- $f(2) = \frac{2-2}{4+4-3} = 0$ (so plot (2,0) on the graph)
- $f(-4) = \frac{-4-2}{16-8-3} = -\frac{6}{5}$ (so plot (-4,6/5) on the graph)
- (b) What is the domain of f? For full credit, show your work, and write the solution in interval notation. (Hint: Start by factoring the denominator.)

Solution: Since the denominator of f is $x^2 + 2x - 3 = (x+3)(x-1)$, the function is undefined for x = -3 and x = 1. Hence, the domain of f is

$$(-\infty, -3) \cup (-3, 1) \cup (1, \infty)$$

(c) Briefly describe what happens to the graph of the function near the points which are *not* in the domain.

Solution: Near the two points which are not in the domain, i.e., x=-3 and x=1, we see on the graph that the y-values of the function go off to ∞ or $-\infty$. We will study this behavior later in the course; we will call x=-3 and x=1 "vertical asymptotes."

- 2. (10 points) Solve each of the following inequalities algebraically, and
 - write the solution set in interval notation
 - graph the solution set on the given number line
 - (a) |3 2x| > 7

Solution:

$$3 - 2x < -7$$
 or $3 - 2x > 7$

$$-2x < -10$$
 or $-2x > 4$

$$x > 5$$
 or $x < -2$

$$(-\infty, -2) \cup (5, \infty)$$

(b) $|4x - 3| \le 5$

Solution:

$$-5 \le 4x - 3 \le 5$$

$$-2 < 4x < 8$$

$$-\frac{1}{2} \le x \le 2$$

$$\left[-\frac{1}{2},2\right]$$

- 3. (10 points) We discussed in class that we can interpret |x| as the distance of x from 0.
 - (a) Hence, the solution set of the inequality |x| < d should correspond to the set of numbers less than distance d from 0. What is the solution set of |x| < d in interval notation?

Solution: The solution set of |x| < d is -d < x < d, i.e., (-d, d).

(b) Now solve the inequality |x-a| < d (for arbitrary constants a and d). Write the solution set in interval notation.

Solution: We solve |x-a| < d as follows:

$$-d < x - a < d$$

$$a - d < x < a + d$$

$$(a-d, a+d)$$

(c) Sketch the solution set from (b) on a number line, and then verbally describe the solution set in terms of distance d and the point a.

- 4. (10 points) Write down and simplify the following for $g(x) = x^2 7x 20$:
 - (a) g(x+h) =

Solution:
$$g(x+h) = (x+h)^2 - 7(x+h) - 20 = x^2 + 2xh + h^2 - 7x - 7h - 20$$

(b) g(x+h) - g(x) =

Solution:
$$g(x+h) - g(x) = (x^2 + 2xh + h^2 - 7x - 7h - 20) - (x^2 - 7x - 20) = 2xh + h^2 - 7h$$

(c) $\frac{g(x+h) - g(x)}{h} =$

Solution:
$$\frac{f(x+h) - f(x)}{h} = \frac{2xh + h^2 - 7h}{h} = 2x + h - 7$$

- 5. (10 points) Let f(x) = 4x 1 and $g(x) = \sqrt{x}$. Write down and simplify expressions for the following functions, and find their respective domains.
 - (a) $\left(\frac{f}{g}\right)(x) =$

domain of $\left(\frac{f}{g}\right)$:

Solution:
$$\left(\frac{f}{g}\right)(x) = \frac{4x-1}{\sqrt{x}}$$
 domain: $(0,\infty)$

(b) $\left(\frac{g}{f}\right)(x) =$

domain of $\left(\frac{g}{f}\right)$:

Solution:
$$\left(\frac{g}{f}\right)(x) = \frac{\sqrt{x}}{4x-1}$$
 domain: $[0,1/4) \cup (1/4,\infty)$

(c) $(f \circ g)(x) =$

domain of $(f \circ g)$:

Solution:
$$(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = 4\sqrt{x} - 1$$
 domain: $[0, \infty)$

(d) $(g \circ f)(x) =$

domain of $(g \circ f)$:

Solution:
$$(g \circ f)(x) = g(f(x)) = g(4x - 1) = \sqrt{4x - 1}$$
 domain: $[1/4, \infty)$