\qquad

1. (10 points) Shown is the graph of the function $f(x)=\frac{x-2}{x^{2}+2 x-3}$:

(a) Compute the following values of f (show your calculations), and label the corresponding points with their coordinates on the graph above:

Solution:

- $f(0)=\frac{0-2}{0+0-3}=\frac{2}{3}$ (so plot $(0,2 / 3)$ on the graph)
- $f(2)=\frac{2-2}{4+4-3}=0($ so plot $(2,0)$ on the graph $)$
- $f(-4)=\frac{-4-2}{16-8-3}=-\frac{6}{5}$ (so plot $(-4,6 / 5)$ on the graph)
(b) What is the domain of f ? For full credit, show your work, and write the solution in interval notation. (Hint: Start by factoring the denominator.)

Solution: Since the denominator of f is $x^{2}+2 x-3=(x+3)(x-1)$, the function is undefined for $x=-3$ and $x=1$. Hence, the domain of f is

$$
(-\infty,-3) \cup(-3,1) \cup(1, \infty)
$$

(c) Briefly describe what happens to the graph of the function near the points which are not in the domain.

Solution: Near the two points which are not in the domain, i.e., $x=-3$ and $x=1$, we see on the graph that the y-values of the function go off to ∞ or $-\infty$. We will study this behavior later in the course; we will call $x=-3$ and $x=1$ "vertical asymptotes."
2. (10 points) Solve each of the following inequalities algebraically, and

- write the solution set in interval notation
- graph the solution set on the given number line
(a) $|3-2 x|>7$

Solution:

$$
\begin{aligned}
& 3-2 x<-7 \quad \text { or } \quad 3-2 x>7 \\
& -2 x<-10 \quad \text { or } \quad-2 x>4 \\
& x>5 \quad \text { or } \quad x<-2 \\
& (-\infty,-2) \cup(5, \infty)
\end{aligned}
$$

(b) $|4 x-3| \leq 5$

Solution:

$$
\begin{aligned}
& -5 \leq 4 x-3 \leq 5 \\
& -2 \leq 4 x \leq 8 \\
& -\frac{1}{2} \leq x \leq 2 \\
& {\left[-\frac{1}{2}, 2\right]}
\end{aligned}
$$

3. (10 points) We discussed in class that we can interpret $|x|$ as the distance of x from 0 .
(a) Hence, the solution set of the inequality $|x|<d$ should correspond to the set of numbers less than distance d from 0 . What is the solution set of $|x|<d$ in interval notation?

Solution: The solution set of $|x|<d$ is $-d<x<d$, i.e., $(-d, d)$.
(b) Now solve the inequality $|x-a|<d$ (for arbitrary constants a and d). Write the solution set in interval notation.

Solution: We solve $|x-a|<d$ as follows:

$$
\begin{aligned}
& -d<x-a<d \\
& a-d<x<a+d \\
& (a-d, a+d)
\end{aligned}
$$

(c) Sketch the solution set from (b) on a number line, and then verbally describe the solution set in terms of distance d and the point a.
4. (10 points) Write down and simplify the following for $g(x)=x^{2}-7 x-20$:
(a) $g(x+h)=$

Solution: $g(x+h)=(x+h)^{2}-7(x+h)-20=x^{2}+2 x h+h^{2}-7 x-7 h-20$
(b) $g(x+h)-g(x)=$

Solution: $g(x+h)-g(x)=\left(x^{2}+2 x h+h^{2}-7 x-7 h-20\right)-\left(x^{2}-7 x-20\right)=2 x h+h^{2}-7 h$
(c) $\frac{g(x+h)-g(x)}{h}=$

Solution: $\frac{f(x+h)-f(x)}{h}=\frac{2 x h+h^{2}-7 h}{h}=2 x+h-7$
5. (10 points) Let $f(x)=4 x-1$ and $g(x)=\sqrt{x}$. Write down and simplify expressions for the following functions, and find their respective domains.
(a) $\left(\frac{f}{g}\right)(x)=$
domain of $\left(\frac{f}{g}\right)$:
Solution: $\left(\frac{f}{g}\right)(x)=\frac{4 x-1}{\sqrt{x}} \quad$ domain: $(0, \infty)$
(b) $\left(\frac{g}{f}\right)(x)=$
domain of $\left(\frac{g}{f}\right)$:
Solution: $\left(\frac{g}{f}\right)(x)=\frac{\sqrt{x}}{4 x-1} \quad$ domain: $[0,1 / 4) \cup(1 / 4, \infty)$
(c) $(f \circ g)(x)=$
domain of $(f \circ g)$:
Solution: $(f \circ g)(x)=f(g(x))=f(\sqrt{x})=4 \sqrt{x}-1 \quad$ domain: $[0, \infty)$
(d) $(g \circ f)(x)=$
domain of $(g \circ f)$:
Solution: $(g \circ f)(x)=g(f(x))=g(4 x-1)=\sqrt{4 x-1}$ domain: $[1 / 4, \infty)$

