1. (5 points) Consider the quadratic polynomial

$$q(x) = -x^2 + 2x + 1$$

(a) Find the roots of q(x) algebraically, and express them in simplest radical form. (Hint: The function does not factor, so use the quadratic formula.)

Solution: To find the roots, we solve the equation q(x) = 0. By the quadratic formula:

$$x = \frac{-2 \pm \sqrt{4 - 4(-1)(1)}}{-2} = \frac{-2 \pm \sqrt{8}}{-2} = \frac{-2 \pm 2\sqrt{2}}{-2} = 1 \pm \sqrt{2}$$

(b) What are the coordinates of the vertex of the parabola y = q(x)? (Recall that for a parabola $y = ax^2 + bx + c$, the x-coordinate of the vertex is given by $x = -\frac{b}{2a}$.)

Solution: The x-coordinate of the vertex is at $x = -\frac{b}{2a} = -\frac{2}{-2} = 1$ and so the y-coordinate of the vertex is q(1) = -1 + 2(1) + 1 = 2. Thus, the vertex of the parabola occurs at (1, 2).

(c) Sketch the graph of q(x), labelling the x-intercepts, the y-intercept, and the vertex with their coordinates:

Solution: From #1, we know the x-intercepts occur at $(1-\sqrt{2},0)$ and $(1-\sqrt{2},0)$. Since $f(0) = -0^2 + 2(0) + 1 = 1$, the *y*-intercepts occurs at (0, 1).

(d) Use the graph to solve the following inequality; express the solution in interval notation:

$$-x^2 + 2x + 1 > 0$$

Solution: From the graph (or really just from the fact that we know the graph of $y = -x^2 + 2x + 1$ is an parabola opening downwards, with x-intercepts at $x = 1 - \sqrt{2}$ and $x = 1 + \sqrt{2}$), we see that the solution set of $-x^2 + 2x + 1 > 0$ is

$$(1-\sqrt{2},1+\sqrt{2})$$

2. (5 points) Consider the function

$$f(x) = (x-2)^3$$

(a) Fill in the blanks:

"The only root of f(x) is $x = \underline{\hspace{1cm}}$, which is a root of multiplicity $\underline{\hspace{1cm}}$."

Solution: The only root of f(x) is x = 2, which is a root of multiplicity 3.

(b) What is the y-intercept of the graph of f(x)? Show the necessary calculations.

Solution: $f(0) = (0-2)^3 = -8$, so the *y*-intercept is (0, -8).

(c) Sketch the graph of y = f(x). Label the x-intercept and y-intercept on your graph.

3. (10 points) Consider the cubic polynomial:

$$p(x) = x^3 + x^2 - x - 1$$

(a) Verify that c = -1 is a root of p(x) (i.e., show that p(-1) = 0):

Solution:
$$p(-1) = (-1)^3 + (-1)^2 - (-1) - 1 = -1 + 1 + 1 - 1 = 0$$

(b) Since we know from (a) that c = -1 is a root of p, we know by the Factor Theorem that (x - c) = (x + 1) is a factor of p(x). Use long division to compute $\frac{p(x)}{x+1}$:

$$\begin{array}{r}
x^2 & -1 \\
x^3 + x^2 - x - 1 \\
-x^3 - x^2 \\
-x - 1 \\
\underline{x + 1} \\
0
\end{array}$$

(c) Fill in the blank with your result from (b), and then continue to finish completely factoring p(x):

$$p(x) = x^3 + x^2 - x - 1 = (x+1)(\underline{\hspace{1cm}}) =$$

Solution:
$$p(x) = x^3 + x^2 - x - 1 = (x+1)(x^2-1) = (x+1)(x+1)(x-1) = (x+1)^2(x-1)$$

(d) What are the roots of p(x)?

Solution: The roots of
$$p(x)$$
 are $x = -1$ and $x = 1$.

(e) Sketch a complete graph of the function below (with the help of Desmos or a graphing calculator). Label the x-intercepts and the y-intercept on the graph with their coordinates.

(f) Use the graph to solve the following inequality: circle the parts of your graph above corresponding to the solution set of the inequality, and write down the solution set in interval notation:

$$x^3 + x^2 - x - 1 < 0$$

Solution: We circle the parts of the graph which are strictly below the y-axis; this corresponds to the following set of x-values: $(-\infty, -1) \cup (-1, 1)$

- 4. (10 points) Consider the rational function: $f(x) = \frac{5(x+4)(x-5)}{x^2-9}$
 - (a) What is the domain of f? Show your calculations, and write the solution in interval notation. (Hint: start by factoring the denominator as a difference of two squares.)

Solution: Since the denominator of f is $x^2 - 9 = (x+3)(x-3)$, the function is undefined for x = -3 and x = 3. Hence, the domain of f is $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$

(b) What are the vertical asymptotes of this function?

Solution: The vertical asymptotes occur at the x-values at which the denominator is 0, i.e., the vertical lines x = -3 and and x = 3.

(c) What is the horizontal asymptote of this function? Show your calculation/reasoning.

Solution: The horizontal asymptote is given by the ratio of the leading terms, which for this function is:

$$y = \frac{5x^2}{x^2} = 5$$

(d) Algebraically calculate for the the x-intercept(s) and y-intercept of the graph of f(x). Again, show the necessary calculations, and write the coordinates of the intercepts in (x, y) form:

Solution:

The x-intercepts are given by the roots of the numerator, which are at x + 4 = 0 and x - 5 = 0, i.e., x = -4 and x = 5. Thus, the x-intercepts are the points (-4,0) and (5,0).

The y-intercept occurs at $f(0) = \frac{5(0+4)(0-5)}{0^2-9} = \frac{5(-20)}{-9} = \frac{100}{9}$, i.e., at the point $(0, \frac{100}{9})$

- (e) Sketch a complete graph of the function below (with the help of Desmos or a graphing calculator):
 - Label the x- and y-intercepts with their coordinates
 - Draw the vertical asymptotes as dashed lines, and label each with its equation

(f) Use the graph to solve the following inequality: again, circle the parts of your graph above corresponding to the solution set of the inequality, and write down the solution set in interval notation.

$$\frac{5(x+4)(x-5)}{x^2-9} \ge 0$$

Solution: We circle the parts of the graph that are at or above the y-axis. This corresponds to the following x-values:

$$(-\infty, -4] \cup (-3, 3) \cup [5, \infty)$$