\qquad

1. (5 points) Consider the quadratic polynomial

$$
q(x)=-x^{2}+2 x+1
$$

(a) Find the roots of $q(x)$ algebraically, and express them in simplest radical form. (Hint: The function does not factor, so use the quadratic formula.)

Solution: To find the roots, we solve the equation $q(x)=0$. By the quadratic formula:

$$
x=\frac{-2 \pm \sqrt{4-4(-1)(1)}}{-2}=\frac{-2 \pm \sqrt{8}}{-2}=\frac{-2 \pm 2 \sqrt{2}}{-2}=1 \pm \sqrt{2}
$$

(b) What are the coordinates of the vertex of the parabola $y=q(x)$? (Recall that for a parabola $y=a x^{2}+b x+c$, the x-coordinate of the vertex is given by $x=-\frac{b}{2 a}$.)

Solution: The x-coordinate of the vertex is at $x=-\frac{b}{2 a}=-\frac{2}{-2}=1$ and so the y-coordinate of the vertex is $q(1)=-1+2(1)+1=2$. Thus, the vertex of the parabola occurs at $(1,2)$.
(c) Sketch the graph of $q(x)$, labelling the x-intercepts, the y-intercept, and the vertex with their coordinates:

Solution: From $\# 1$, we know the x-intercepts occur at $(1-\sqrt{2}, 0)$ and $(1-\sqrt{2}, 0)$.
Since $f(0)=-0^{2}+2(0)+1=1$, the y-intercepts occurs at $(0,1)$.

(d) Use the graph to solve the following inequality; express the solution in interval notation:

$$
-x^{2}+2 x+1>0
$$

Solution: From the graph (or really just from the fact that we know the graph of $y=-x^{2}+2 x+1$ is an parabola opening downwards, with x-intercepts at $x=1-\sqrt{2}$ and $x=1+\sqrt{2}$), we see that the solution set of $-x^{2}+2 x+1>0$ is

$$
(1-\sqrt{2}, 1+\sqrt{2})
$$

2. (5 points) Consider the function

$$
f(x)=(x-2)^{3}
$$

(a) Fill in the blanks:
"The only root of $f(x)$ is $x=$ \qquad which is a root of multiplicity \qquad ."

Solution: The only root of $f(x)$ is $x=2$, which is a root of multiplicity 3 .
(b) What is the y-intercept of the graph of $f(x)$? Show the necessary calculations.

Solution: $f(0)=(0-2)^{3}=-8$, so the y-intercept is $(0,-8)$.
(c) Sketch the graph of $y=f(x)$. Label the x-intercept and y-intercept on your graph.

3. (10 points) Consider the cubic polynomial:

$$
p(x)=x^{3}+x^{2}-x-1
$$

(a) Verify that $c=-1$ is a root of $p(x)$ (i.e., show that $p(-1)=0$):

Solution: $p(-1)=(-1)^{3}+(-1)^{2}-(-1)-1=-1+1+1-1=0$
(b) Since we know from (a) that $c=-1$ is a root of p, we know by the Factor Theorem that $(x-c)=(x+1)$ is a factor of $p(x)$. Use long division to compute $\frac{p(x)}{x+1}$:

$$
\begin{aligned}
& \text { Solution: } \\
& \begin{array}{r}
x+1) \begin{array}{r}
x^{2}-1 \\
x^{3}+x^{2}-x-1 \\
-x^{3}-x^{2} \\
-x-1
\end{array}
\end{array} \\
& \begin{array}{r}
-x-1 \\
x+1 \\
\hline
\end{array}
\end{aligned}
$$

(c) Fill in the blank with your result from (b), and then continue to finish completely factoring $p(x)$:

$$
p(x)=x^{3}+x^{2}-x-1=(x+1)(\square)=
$$

Solution: $p(x)=x^{3}+x^{2}-x-1=(x+1)\left(x^{2}-1\right)=(x+1)(x+1)(x-1)=(x+1)^{2}(x-1)$
(d) What are the roots of $p(x)$?

Solution: The roots of $p(x)$ are $x=-1$ and $x=1$.
(e) Sketch a complete graph of the function below (with the help of Desmos or a graphing calculator). Label the x-intercepts and the y-intercept on the graph with their coordinates.

(f) Use the graph to solve the following inequality: circle the parts of your graph above corresponding to the solution set of the inequality, and write down the solution set in interval notation:

$$
x^{3}+x^{2}-x-1<0
$$

Solution: We circle the parts of the graph which are strictly below the y-axis; this corresponds to the following set of x-values: $(-\infty,-1) \cup(-1,1)$
4. (10 points) Consider the rational function: $f(x)=\frac{5(x+4)(x-5)}{x^{2}-9}$
(a) What is the domain of f ? Show your calculations, and write the solution in interval notation.
(Hint: start by factoring the denominator as a difference of two squares.)

Solution: Since the denominator of f is $x^{2}-9=(x+3)(x-3)$, the function is undefined for $x=-3$ and $x=3$. Hence, the domain of f is $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$
(b) What are the vertical asymptotes of this function?

Solution: The vertical asymptotes occur at the x-values at which the denominator is 0 , i.e., the vertical lines $x=-3$ and and $x=3$.
(c) What is the horizontal asymptote of this function? Show your calculation/reasoning.

Solution: The horizontal asymptote is given by the ratio of the leading terms, which for this function is:

$$
y=\frac{5 x^{2}}{x^{2}}=5
$$

(d) Algebraically calculate for the the x-intercept(s) and y-intercept of the graph of $f(x)$. Again, show the necessary calculations, and write the coordinates of the intercepts in (x, y) form:

Solution:

The x-intercepts are given by the roots of the numerator, which are at $x+4=0$ and $x-5=0$, i.e., $x=-4$ and $x=5$. Thus, the x-intercepts are the points $(-4,0)$ and $(5,0)$.
The y-intercept occurs at $f(0)=\frac{5(0+4)(0-5)}{0^{2}-9}=\frac{5(-20)}{-9}=\frac{100}{9}$, i.e., at the point $\left(0, \frac{100}{9}\right)$
(e) Sketch a complete graph of the function below (with the help of Desmos or a graphing calculator):

- Label the x - and y-intercepts with their coordinates
- Draw the vertical asymptotes as dashed lines, and label each with its equation

(f) Use the graph to solve the following inequality: again, circle the parts of your graph above corresponding to the solution set of the inequality, and write down the solution set in interval notation.

$$
\frac{5(x+4)(x-5)}{x^{2}-9} \geq 0
$$

Solution: We circle the parts of the graph that are at or above the y-axis. This corresponds to the following x-values:

$$
(-\infty,-4] \cup(-3,3) \cup[5, \infty)
$$

