Mathematics 1375/OL79, Fall 2020
Instructor: Suman Ganguli

Quiz \#3 (take-home)
Due Sunday, Nov 8

Name: \qquad

Shown below is the graph of the cubic polynomial $p(x)=x^{3}+2 x^{2}-10 x-20$:

1. (2 points) From the graph, it seems that $x=-2$ is a root of $p(x)$. Verify that this is the case (i.e., show that $p(-2)=0)$.

Solution: $p(-2)=(-2)^{3}+2(-2)^{2}-10(-2)-20=-8+8+20-20=0$
2. (6 points) Use the root $c=-2$ to factor the polynomial $p(x)$:
(a) Since we know from \#1 that $c=-2$ is a root of p, we know $(x-c)=(x+2)$ is a factor of $p(x)$. Use long division to compute $\frac{p(x)}{x+2}$:

$$
x + 2 \longdiv { x ^ { 3 } + 2 x ^ { 2 } - 1 0 x - 2 0 }
$$

Solution:

$$
x+2) \begin{array}{r}
x^{2} \\
\begin{array}{r}
x^{3}+2 x^{2}-10 x-20 \\
-x^{3}-2 x^{2} \\
-10 x-20 \\
-10 x+20 \\
0
\end{array}
\end{array}
$$

(b) Fill in the blank with your result from (a) to get the factorization of $p(x)$:

$$
p(x)=x^{3}+2 x^{2}-10 x-20=(x+2)(
$$

\qquad

Solution:

$$
p(x)=x^{3}+2 x^{2}-10 x-20=(x+2)\left(x^{2}-10\right)
$$

3. (4 points) Use the factorization from $\# 2(\mathrm{~b})$ to algebraically solve for the other two roots of $p(x)$ in radical form (i.e., solve for the roots of the quadratic polynomial that results from factoring $x+2$ out of $p(x))$. Leave your answers in radical form, i.e., in terms of square roots.

Solution: The roots of $p(x)=x^{3}+2 x^{2}-10 x-20=(x+2)\left(x^{2}-10\right)$ occur when $x+2=0$ or $x^{2}-10=0$.
The equation $x+2=0$ yields the root $x=-2$, which was identified from the graph and verified as a root in part (a). We solve the equation $x^{2}-10=0$ in order to find the other two roots of $p(x)$. You can use the quadratic formula, but in this case (when $b=0$, i.e., there's no x term) it's easier to just solve directly:

$$
x^{2}-10=0 \Longleftrightarrow x^{2}=10 \Longleftrightarrow x= \pm \sqrt{10}
$$

4. (4 points) (a) Write down the (x, y) coordinates of the $3 x$-intercepts of the graph of $p(x)$, corresponding to the 3 roots:

Solution:

$$
(-\sqrt{10}, 0),(-2,0), \sqrt{10}, 0)
$$

(b) Algebraically calculate the y-intercept of the graph $y=p(x)$ and write down the coordinates of the y-intercept:

Solution: Since $p(0)=0^{3}+2\left(0^{2}\right)-10(0)-20=-20$, the y-intercept of the graph is at $(-20,0)$.
5. (4 points) Label the x-intercepts and the y-intercept on the graph with their (x, y) coordinates (leave the x-coordinates corresponding to the 2 roots you found in $\# 3$ in radical form, i.e., in terms of square roots).

Extra credit (up to 3pts): Recreate the graph of $p(x)$ in Desmos, and then click on x-intercepts, the y-intercept, and also the local maximum and the local minimum (so that Desmos displays the coordinates of these 6 points).
Download or screenshot your graph to an image file, and submit with your quiz solutions on Blackboard.

