\qquad

| Question: | 1 | 2 | 3 | 4 | 5 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Points: | 2 | 6 | 4 | 4 | 4 | 20 |
| Score: | | | | | | |

In order to receive full credit, you must show all your work and simplify your answers. Submit your written solutions by the end of the day Sunday on Blackboard (look for the "Quiz \#3" Assignment). Please scan your written answers to a single pdf file.

Shown below is the graph of the cubic polynomial $p(x)=x^{3}+2 x^{2}-10 x-20$:

1. (2 points) From the graph, it seems that $x=-2$ is a root of $p(x)$. Verify that this is the case (i.e., show that $p(-2)=0)$.
2. (6 points) Use the root $c=-2$ to factor the polynomial $p(x)$:
(a) Since we know from $\# 1$ that $c=-2$ is a root of p, we know $(x-c)=(x+2)$ is a factor of $p(x)$. Use long division to compute $\frac{p(x)}{x+2}$:

$$
x + 2 \longdiv { x ^ { 3 } + 2 x ^ { 2 } - 1 0 x - 2 0 }
$$

(b) Fill in the blank with your result from (a) to get the factorization of $p(x)$:

$$
p(x)=x^{3}+2 x^{2}-10 x-20=(x+2)(
$$

\qquad
3. (4 points) Use the factorization from $\# 2(\mathrm{~b})$ to algebraically solve for the other two roots of $p(x)$ in radical form (i.e., solve for the roots of the quadratic polynomial that results from factoring $x+2$ out of $p(x))$. Leave your answers in radical form, i.e., in terms of square roots.
4. (4 points) (a) Write down the (x, y) coordinates of the $3 x$-intercepts of the graph of $p(x)$, corresponding to the 3 roots:
(b) Algebraically calculate the y-intercept of the graph $y=p(x)$ and write down the coordinates of the y-intercept:
5. (4 points) Label the x-intercepts and the y-intercept on the graph with their (x, y) coordinates (leave the x-coordinates corresponding to the 2 roots you found in $\# 3$ in radical form, i.e., in terms of square roots).

Extra credit (up to 3pts): Recreate the graph of $p(x)$ in Desmos, and then click on x-intercepts, the y-intercept, and also the local maximum and the local minimum (so that Desmos displays the coordinates of these 6 points).
Download or screenshot your graph to an image file, and submit with your quiz solutions on Blackboard.

