Mathematics 1375, Fall 2020
Instructor: Suman Ganguli

Quiz \#2
Due: Friday, October 2
\qquad

1. (10 points) Shown below is the graph of the function $f(x)=-x^{2}+4$:

(a) Compute the following values of f (show your calculations), and label the corresponding points on the graph above:

Solution:

- $f(0)=-0^{2}+4=0+4=4$ (which means the point $(0,4)$ is on the graph)
- $f(1)=-\left(1^{2}\right)+4=-1+4=3$ (so the point $(1,3)$ is on the graph)
- $f(-3)=-\left(3^{2}\right)+4=-9+4=-5$ (so the point $(-3,-5)$ is on the graph)
(b) What is the domain of f ? What is the range of f ? Write the solutions in interval notation:

Solution:

- The domain of f is \mathbb{R}, i.e., all real numbers; in interval notation: $(-\infty, \infty)$
- Since the max value of $f(x)$ is $f(0)=4$ the range of f is $(-\infty, 4]$

2. (4 points) Find the domain of each of the following functions. Show the necessary calculations, and write the solutions in interval notation:
(a)

$$
g(x)=\frac{1}{x-2}
$$

Solution: The domain consists of all real numbers except $x=2$, i.e., in interval notation: $(-\infty, 2) \cup(2, \infty)$
(b)

$$
h(x)=\sqrt{x+1}
$$

Solution: The domain consists of real numbers x such that $x+1 \geq 0$, i.e., in $x \geq-1$. In interval notation: $[-1, \infty)$
3. (6 points) Let $f(x)=2 x^{2}-3 x+1$.
(a) Compute and simplify:

$$
f(x+h)=
$$

Solution: $f(x+h)=2(x+h)^{2}-3(x+h)+1=2\left(x^{2}+2 x h+h^{2}\right)-3 x-3 h+1=2 x^{2}+4 x h+2 h^{2}-3 x-3 h+1$
(b) Next, compute and simplify:

$$
f(x+h)-f(x)=
$$

Solution: $f(x+h)-f(x)=\left(2 x^{2}+4 x h+2 h^{2}-3 x-3 h+1\right)-\left(2 x^{2}-3 x+1\right)=4 x h+2 h^{2}-3 h$
(c) Finally, compute and simplify the difference quotient:

$$
\frac{f(x+h)-f(x)}{h}=
$$

Solution:

$$
\frac{f(x+h)-f(x)}{h}=\frac{4 x h+2 h^{2}-3 h}{h}=4 x+2 h-3
$$

