Exam \#1

Due: Sunday, October 11
\qquad

| Question: | 1 | 2 | 3 | 4 | 5 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Points: | 10 | 10 | 10 | 10 | 10 | 50 |
| Score: | | | | | | |

In order to receive full credit, you must show all your work and simplify your answers. Submit your written solutions by the end of the day Sunday on Blackboard (look for the "Exam \#1" Assignment). Please scan your written answers to a single pdf file.

1. (10 points) Shown is the graph of the function $f(x)=\frac{x-2}{x^{2}+2 x-3}$:

(a) Compute the following values of f (show your calculations), and label the corresponding points with their coordinates on the graph above:

- $f(0)=$
- $f(2)=$
- $f(-4)=$
(b) What is the domain of f ? For full credit, show your work, and write the solution in interval notation. (Hint: Start by factoring the denominator.)
(c) Briefly describe what happens to the graph of the function near the points which are not in the domain.

2. (10 points) Solve each of the following inequalities algebraically, and

- write the solution set in interval notation
- graph the solution set on the given number line
(a) $|3-2 x|>7$

(b) $|4 x-3| \leq 5$

3. (10 points) We discussed in class that we can interpret $|x|$ as the distance of x from 0 .
(a) Hence, the solution set of the inequality $|x|<d$ should correspond to the set of numbers less than distance d from 0 . What is the solution set of $|x|<d$ in interval notation?
(b) Now solve the inequality $|x-a|<d$ (for arbitrary constants a and d). Write the solution set in interval notation.
(c) Sketch the solution set from (b) on a number line, and then verbally describe the solution set in terms of distance d and the point a.
4. (10 points) Write down and simplify the following for $g(x)=x^{2}-7 x-20$:
(a) $g(x+h)=$
(b) $g(x+h)-g(x)=$
(c) $\frac{g(x+h)-g(x)}{h}=$
5. (10 points) Let $f(x)=4 x-1$ and $g(x)=\sqrt{x}$. Write down and simplify expressions for the following functions, and find their respective domains.
(a) $\left(\frac{f}{g}\right)(x)=$
domain of $\left(\frac{f}{g}\right)$:
(b) $\left(\frac{g}{f}\right)(x)=$
domain of $\left(\frac{g}{f}\right)$:
(c) $(f \circ g)(x)=$ domain of $(f \circ g)$:
(d) $(g \circ f)(x)=$ domain of $(g \circ f)$:
