Exam #1 Due: Sunday, October 11 Na

Name:

Question:	1	2	3	4	5	Total
Points:	10	10	10	10	10	50
Score:						

In order to receive full credit, you must **show all your work** and simplify your answers. Submit your written solutions by the end of the day Sunday on Blackboard (look for the "Exam #1" Assignment). Please **scan your written answers to a single pdf file**.

1. (10 points) Shown is the graph of the function $f(x) = \frac{x-2}{x^2+2x-3}$:

- (a) Compute the following values of f (show your calculations), and label the corresponding points with their coordinates on the graph above:
 - f(0) =
 - f(2) =
 - f(-4) =
- (b) What is the domain of f? For full credit, show your work, and write the solution in interval notation. (Hint: Start by factoring the denominator.)
- (c) Briefly describe what happens to the graph of the function near the points which are not in the domain.

- 2. (10 points) Solve each of the following inequalities algebraically, and
 - write the solution set in interval notation
 - graph the solution set on the given number line

(a) |3 - 2x| > 7

(b) $|4x - 3| \le 5$

- 3. (10 points) We discussed in class that we can interpret |x| as the distance of x from 0.
 - (a) Hence, the solution set of the inequality |x| < d should correspond to the set of numbers less than distance d from 0. What is the solution set of |x| < d in interval notation?
 - (b) Now solve the inequality |x a| < d (for arbitrary constants a and d). Write the solution set in interval notation.

(c) Sketch the solution set from (b) on a number line, and then verbally describe the solution set in terms of distance d and the point a.

- 4. (10 points) Write down and simplify the following for $g(x) = x^2 7x 20$:
 - (a) g(x+h) =

(b) g(x+h) - g(x) =

(c)
$$\frac{g(x+h) - g(x)}{h} =$$

5. (10 points) Let f(x) = 4x - 1 and $g(x) = \sqrt{x}$. Write down and simplify expressions for the following functions, and find their respective domains.

(a)
$$\left(\frac{f}{g}\right)(x) =$$

domain of $\left(\frac{f}{g}\right)$:

(b)
$$\left(\frac{g}{f}\right)(x) =$$

domain of $\left(\frac{g}{f}\right)$:

(c) $(f \circ g)(x) =$

domain of $(f \circ g)$:

(d) $(g \circ f)(x) =$

domain of $(g \circ f)$: