Mathematics 1375/OL79, Fall 2020
Instructor: Suman Ganguli

Quiz \#1
Due: Friday, Sept 18
\qquad

1. (4 points) For each of the following inequalities:

- express the set in interval notation
- graph the set on the number line
(a) $-4 \leq x<1$

Solution:

$$
[-4,1)
$$

(b) $x \geq 0$ but $x \neq 3$

Solution:

$$
[0,3) \cup(3, \infty)
$$

2. (6 points) Solve each inequality algebraically (show all your work!), and write the solution set in interval notation:
(a)

$$
|2 x-5|<7
$$

Solution: $|2 x-5|<7$ if and only if

$$
\begin{aligned}
& -7<2 x-5<7 \\
& -2<2 x<12 \\
& -1<x<6
\end{aligned}
$$

So the solution set is $(-1,6)$
(b)

$$
|15-3 x| \geq 6
$$

Solution: $|15-3 x| \geq 6$ if and only if

$$
\begin{aligned}
& 15-3 x \geq 6 \quad \text { or } \quad 15-3 x \leq-6 \\
& -3 x \geq-9 \quad \text { or } \quad-3 x \leq-21 \\
& x \geq 3 \quad \text { or } \quad x \leq 7
\end{aligned}
$$

So the solution set is $(-\infty, 3] \cup[7, \infty)$
3. (Extra credit) Explain why the inequality $|7 x+2|<-1$ has no solutions (i.e., the solution set is the "empty set": $\}=\emptyset$). Your explanation should consist of 1-2 complete sentences. (Hint: Explain in terms of the range, i.e., the set of outputs, of the absolute value function.)

Solution: The given inequality has no solutions because the left-hand side of the inequality is a negative number. Since the range of the $f(x)=|x|$ is $[0, \infty)$, i..e., the output of the absolute value function is always a number greater than or equal to $0,|7 x+2|$ is certainly greater than or equal to 0 for all inputs x (in fact, $|7 x+2| \geq 2$ for all x !)

