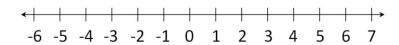
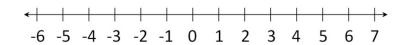
- 1. (4 points) For each of the following inequalities:
 - express the set in interval notation
 - graph the set on the number line
 - (a) $-4 \le x < 1$



Solution:

$$[-4, 1)$$

(b) $x \ge 0$ but $x \ne 3$



Solution:

$$[0,3) \cup (3,\infty)$$

2. (6 points) Solve each inequality algebraically (show all your work!), and write the solution set in interval notation:

(a)

$$|2x - 5| < 7$$

Solution: |2x-5| < 7 if and only if

$$-7 < 2x - 5 < 7$$

$$-2 < 2x < 12$$

$$-1 < x < 6$$

So the solution set is (-1,6)

(b)

$$|15 - 3x| \ge 6$$

Solution: $|15 - 3x| \ge 6$ if and only if

$$15 - 3x \ge 6$$
 or $15 - 3x \le -6$

$$-3x \ge -9$$
 or $-3x \le -21$

$$x \ge 3$$
 or $x \le 7$

So the solution set is $(-\infty, 3] \cup [7, \infty)$

3. (Extra credit) Explain why the inequality |7x+2| < -1 has no solutions (i.e., the solution set is the "empty set": $\{\} = \emptyset$). Your explanation should consist of 1-2 complete sentences. (Hint: Explain in terms of the range, i.e., the set of outputs, of the absolute value function.)

Solution: The given inequality has no solutions because the left-hand side of the inequality is a negative number. Since the range of the f(x) = |x| is $[0, \infty)$, i..e., the output of the absolute value function is always a number greater than or equal to 0, |7x + 2| is certainly greater than or equal to 0 for all inputs x (in fact, $|7x + 2| \ge 2$ for all x!)