Lesson \#11

MAT 1372 Statistics with Probability
 Dr. Bonanome

Mean

Mean of a discrete probability distribution

- $\mu=\Sigma x P(x)$
- Each value of x is multiplied by its corresponding probability and the products are added.

Example: Finding the Mean

The probability distribution for the personality inventory test for passive-aggressive traits is given. Find the mean score.

Solution: | \boldsymbol{x} | $\boldsymbol{P}(\boldsymbol{x})$ |
| :---: | :---: |
| 1 | 0.16 |
| 2 | 0.22 |
| 3 | 0.28 |
| 4 | 0.20 |
| 5 | 0.14 |

$$
\mu=\Sigma x P(x)=2.94
$$

Variance and Standard Deviation

Variance of a discrete probability distribution

- $\sigma^{2}=\Sigma(x-\mu)^{2} P(x)$

Standard deviation of a discrete probability distribution

- $\sigma=\sqrt{\sigma^{2}}=\sqrt{\Sigma(x-\mu)^{2} P(x)}$

Example: Finding the Variance and Standard Deviation

The probability distribution for the personality inventory test for passive-aggressive traits is given. Find the variance and standard deviation. $(\mu=2.94)$

\boldsymbol{x}	$\boldsymbol{P}(\boldsymbol{x})$
1	0.16
2	0.22
3	0.28
4	0.20
5	0.14

Solution: Finding the Variance and Standard Deviation

Recall $\mu=2.94$

x	$P(x)$	$x-\mu$
1	0.16	$1-2.94=-1.94$
2	0.22	$2-2.94=-0.94$
3	0.28	$3-2.94=0.06$
4	0.20	$4-2.94=1.06$
5	0.14	$5-2.94=2.06$

Variance: $\sigma^{2}=\Sigma(x-\mu)^{2} P(x)=1.616$
Standard Deviation: $\sigma=\sqrt{\sigma^{2}}=\sqrt{1.616} \approx 1.3$

Expected Value

Expected value of a discrete random variable

- Equal to the mean of the random variable.
- $\mathrm{E}(x)=\mu=\Sigma x P(x)$

Example: Finding an Expected Value

At a raffle, 1500 tickets are sold at $\$ 2$ each for four prizes of $\$ 500, \$ 250, \$ 150$, and $\$ 75$. You buy one ticket. What is the expected value of your gain?

Solution: Finding an Expected Value

- To find the gain for each prize, subtract the price of the ticket from the prize:

- Your gain for the $\$ 500$ prize is $\$ 500-\$ 2=\$ 498$
- Your gain for the $\$ 250$ prize is $\$ 250-\$ 2=\$ 248$
- Your gain for the $\$ 150$ prize is $\$ 150-\$ 2=\$ 148$
- Your gain for the $\$ 75$ prize is $\$ 75-\$ 2=\$ 73$
- If you do not win a prize, your gain is $\$ 0-\$ 2=-\$ 2$

Solution: Finding an Expected Value

- Probability distribution for the possible gains (outcomes)

Gain, x	$\$ 498$	$\$ 248$	$\$ 148$	$\$ 73$	$-\$ 2$
$P(x)$	$\frac{1}{1500}$	$\frac{1}{1500}$	$\frac{1}{1500}$	$\frac{1}{1500}$	$\frac{1496}{1500}$

$$
\begin{aligned}
E(x) & =\Sigma_{x} P(x) \\
& =\$ 498 \cdot \frac{1}{1500}+\$ 248 \cdot \frac{1}{1500}+\$ 148 \cdot \frac{1}{1500}+\$ 73 \cdot \frac{1}{1500}+(-\$ 2) \cdot \frac{1496}{1500} \\
& =-\$ 1.35
\end{aligned}
$$

You can expect to lose an average of $\$ 1.35$ for each ticket you buy.

