Lesson #11

MAT 1372 Statistics with Probability Dr. Bonanome

Mean

Mean of a discrete probability distribution

- $\mu = \Sigma x P(x)$
- Each value of *x* is multiplied by its corresponding probability and the products are added.

Example: Finding the Mean

The probability distribution for the personality inventory test for passive-aggressive traits is given. Find the mean score.

Solution:

 $\mu = \Sigma x P(x) = 2.94$

Variance and Standard Deviation

Variance of a discrete probability distribution

• $\sigma^2 = \Sigma (x - \mu)^2 P(x)$

Standard deviation of a discrete probability distribution

•
$$\sigma = \sqrt{\sigma^2} = \sqrt{\Sigma(x-\mu)^2 P(x)}$$

Example: Finding the Variance and Standard Deviation

The probability distribution for the personality inventory test for passive-aggressive traits is given. Find the variance and standard deviation. ($\mu = 2.94$)

x	P(x)
1	0.16
2	0.22
3	0.28
4	0.20
5	0.14

Solution: Finding the Variance and Standard Deviation

Recall $\mu = 2.94$

x	P(x)	$x - \mu$
1	0.16	1 - 2.94 = -1.94
2	0.22	2 - 2.94 = -0.94
3	0.28	3 - 2.94 = 0.06
4	0.20	4 - 2.94 = 1.06
5	0.14	5 - 2.94 = 2.06

Variance: $\sigma^2 = \Sigma (x - \mu)^2 P(x) = 1.616$

Standard Deviation:
$$\sigma = \sqrt{\sigma^2} = \sqrt{1.616} \approx 1.3$$

Expected Value

Expected value of a discrete random variable

- Equal to the mean of the random variable.
- $E(x) = \mu = \Sigma x P(x)$

Example: Finding an Expected Value

At a raffle, 1500 tickets are sold at \$2 each for four prizes of \$500, \$250, \$150, and \$75. You buy one ticket. What is the expected value of your gain?

Solution: Finding an Expected Value

• To find the gain for each prize, subtract the price of the ticket from the prize:

- Your gain for the \$500 prize is \$500 \$2 = \$498
- Your gain for the \$250 prize is \$250 \$2 = \$248
- Your gain for the \$150 prize is \$150 \$2 = \$148
- Your gain for the \$75 prize is \$75 \$2 = \$73
- If you do not win a prize, your gain is \$0 \$2 = -\$2

Solution: Finding an Expected Value

 Probability distribution for the possible gains (outcomes)

Gain, x	\$498	\$248	\$148	\$73	-\$2
P(x)	1	1	1	1	1496
	1500	1500	1500	1500	1500

 $E(x) = \Sigma x P(x)$

$$=\$498 \cdot \frac{1}{1500} + \$248 \cdot \frac{1}{1500} + \$148 \cdot \frac{1}{1500} + \$73 \cdot \frac{1}{1500} + (-\$2) \cdot \frac{1496}{1500}$$
$$= -\$1.35$$

You can expect to lose an average of \$1.35 for each ticket you buy.

1*