Sample Exam II

MAT 1375

NAME:

Part I. Functions.

1. If $f(x)=x^{2}+1$ and $g(x)=\frac{1}{x}$, write the rule and give the domain and range for:
a) $(f \circ g)(x)$
b) f / g
c) $f-g$
2. Given the graph of f and g below, evaluate: a) $(f+g)(1)$
b) $(f \circ g)(2)$
c) $\left(\frac{f}{g}\right)(0)$

3. Given the graph of f below, graph check whether f is invertible and if it is, graph its inverse

4. Find the inverse of the function given below and check your answer by performing the relavent compositions.

$$
f(x)=6+\sqrt{2 x-4}
$$

5. Restrict the domain of $f(x)=\sqrt{x^{2}+1}$ so that it has an inverse.

Part II. Polynomials and Rational functions.

1. Divide $x^{5}-x^{3}+x+6$ by $x-2$.
2. Find the remainder when $x^{3}+2 x-1$ is divided by $x+2$ without dividing (by any method).
3. Use the Factor Theorem to determine whether or not $h(x)=x-2$ is a factor of $f(x)=x^{3}-x^{2}-4 x+4$.
4. Find a polynomial of degree 3 with roots $-3,0$, and 4 , and with $f(5)=80$.
5. Find all real roots of the polynomial $6 x^{3}-13 x^{2}+x+2$ then express the polynomial as a product of its factors.
6. Write down a polynomial of degree 3 that has real coefficients and a root at $2+i$.
7. Write down a polynomial that has complex coefficients that has roots at i and $2-i$.
8. Sketch a complete graph of the function $f(x)=x^{5}-3 x^{3}+x$ and label the extrema and all intercepts (exactly if possible).
9. Find the domain, all horizontal asymptotes, vertical asymptotes, removable singularities (holes), and x - and y - intercepts. Use this information together with the graph of the calculator to sketch the graph of
(a) $f(x)=\frac{x^{2}+3 x+2}{x_{1}}$
(b) $g(x)=\frac{x^{3}-4 x}{x^{2}-8 x+15}$
(c) $h(x)=\frac{x^{4}-10 x^{2}+9}{x^{2}-3 x+2}$
