## Sample Exam I

MAT 1375 Fall 2017
NAME:
Part I. Absolute value equations. Solve. Be sure to check your solution(s).

1. $\{-1,14 / 4\}$
2. $\{1,7 / 3\}$

Part II. Absolute value inequalities. Solve the inequality and express your solution as an inequality, in interval notation and graphically on the number line.

1. $(4,8)$ or $\{x \mid 4<x<8\}$ (or graphically)
2. $(-\infty,-11 / 20] \cup[-1 / 4,+\infty)$ or $\{x \mid x \leq-11 / 20$ or $x \geq-1 / 4\}$ (or graphically)

Part III. Lines.

1. Find the slope and the $y$-intercept of the line whose equation is $4 x+3 y=5$.

Slope $m=-4 / 3$ and $y$-intercept $(0,5 / 3)$.
2. Find the slope and the $y$-intercept of the line whose equation is $3 x-2 y+6=0$. Use this information to graph the equation.

Slope $m=3 / 2$ and y-intercept ( 0,3 ), now graph.
Part IV. Graphs. Use a maximum/minimum finder to determine the highest and lowest point on the graph in the given window.
$y=.07 x^{5}-.3 x^{3}+1.5 x^{2}-2$ in the window $(-3 \leq x \leq 2)$ and $(-6 \leq y \leq 6)$

Max: (-2.46, 5.24) and Min: $(0.00000141,-2)$

Part V. Solving equations graphically.

1. Use graphical approximation (a root finder or an intersection finder) to find a solution of the equation $x^{5}+5=3 x^{4}+x$ on the interval $(2, \infty)$.
2. Use graphical approximation (a root finder or an intersection finder) to find a solution of the equation $6 x^{3}-5 x^{2}+3 x-2=0$.
$(.76,0)$

Part VI. Functions.

1. Determine whether the equation defines y as a function of x or defines x as a function of $y$.

$$
y=3 x^{2}-12
$$

$y$ as a function of $x$ only.
2. $f(x)=\frac{x-3}{x^{2}+4}$. Find a) $f(-1) \quad$ b) $f(0) \quad$ c) $f(2)$
a) $f(-1)=-0.8$
b) $f(0)=-0.75$
c) $f(2)=-0.125$
3. Assume $h \neq 0$. Compute and simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$ for $f(x)=x-x^{2}$.
$1-2 x-h$
4. What is the natural domain of the function $g(u)=\frac{u^{2}+1}{u^{2}-u-6}$ ? $\mathbb{R}-\{-2,3\}$ or $(-\infty,-2) \cup(-2,3) \cup(3,+\infty)$

