Sample Exam I

NAME:

Part I. Absolute value equations. Solve. Be sure to check your solution(s).

1. $|4 x-5|=9$
2. $|3 x-5|=2$

Part II. Absolute value inequalities. Solve the inequality and express your solution as an inequality, in interval notation and graphically on the number line.

1. $|x-6|<2$
2. $|5 x+2| \geq \frac{3}{4}$

Part III. Lines.

1. Find the slope and the y-intercept of the line whose equation is $4 x+3 y=5$.
2. Find the slope and the y-intercept of the line whose equation is $3 x-2 y+6=0$. Use this information to graph the equation.

Part IV. Graphs. Use a maximum/minimum finder to determine the highest and lowest point on the graph in the given window.

$$
y=.07 x^{5}-.3 x^{3}+1.5 x^{2}-2 \text { in the window }(-3 \leq x \leq 2) \text { and }(-6 \leq y \leq 6)
$$

Part V. Solving equations graphically.

1. Use graphical approximation (a root finder or an intersection finder) to find a solution of the equation $x^{5}+5=3 x^{4}+x$ on the interval $(2, \infty)$.
2. Use graphical approximation (a root finder or an intersection finder) to find a solution of the equation $6 x^{3}-5 x^{2}+3 x-2=0$.

Part VI. Functions.

1. Determine whether the equation defines y as a function of x or defines x as a function of y.

$$
y=3 x^{2}-12
$$

2. $f(x)=\frac{x-3}{x^{2}+4}$. Find a) $f(-1)$
b) $f(0)$
c) $f(2)$
3. Assume $h \neq 0$. Compute and simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$ for $f(x)=x-x^{2}$.
4. What is the natural domain of the function $g(u)=\frac{u^{2}+1}{u^{2}-u-6}$?
5. Draw the graph of a function f that satisfies the following four conditions:
(1). domain $f=[-2,4] ;(2)$. range $f=[-3,5]$
(3). $f(-2)=5$;
(4). $f(x)$ starts increasing when $x=2$

