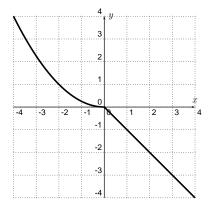

Sample Exam II

MAT 1375


NAME:

Part I. Functions.

- 1. If $f(x)=x^2+1$ and $g(x)=\frac{1}{x}$, write the rule and give the domain and range for: a) $(f\circ g)(x)$ b) f/g c) f-g
- 2. Given the graph of f and g below, evaluate: a) (f+g)(1) b) $(f\circ g)(2)$ c) $\left(\frac{f}{g}\right)(0)$

3. Given the graph of f below, graph check whether f is invertible and if it is, graph its inverse

4. Find the inverse of the function given below and check your answer by performing the relavent compositions.

$$f(x) = 6 + \sqrt{2x - 4}$$

5. Restrict the domain of $f(x) = \sqrt{x^2 + 1}$ so that it has an inverse.

Part II. Polynomials and Rational functions.

- 1. Divide $x^5 x^3 + x + 6$ by x 2.
- 2. Find the remainder when x^3+2x-1 is divided by x+2 without dividing (by any method).
- 3. Use the Factor Theorem to determine whether or not h(x)=x-2 is a factor of $f(x)=x^3-x^2-4x+4$.
- 4. Find a polynomial of degree 3 with roots -3, 0, and 4, and with f(5)=80.
- 5. Find all real roots of the polynomial $6x^3 13x^2 + x + 2$ then express the polynomial as a product of its factors.
- 6. Write down a polynomial of degree 3 that has real coefficients and a root at 2+i.
- 7. Write down a polynomial that has complex coefficients that has roots at i and 2-i.
- 8. Sketch a complete graph of the function $f(x)=x^5-3x^3+x$ and label the extrema and all intercepts (exactly if possible).

9. Find the domain, all horizontal asymptotes, vertical asymptotes, removable singularities (holes), and x- and y- intercepts. Use this information together with the graph of the calculator to sketch the graph of

(a)
$$f(x) = \frac{x^2 + 3x + 2}{x_1}$$

(b)
$$g(x) = \frac{x^3 - 4x}{x^2 - 8x + 15}$$

(c)
$$h(x) = \frac{x^4 - 10x^2 + 9}{x^2 - 3x + 2}$$