MAT 1475 Final Exam Review Sheet

1. (1 point) setFinal1475/PFinalBucket01Limits1Continuitysmooth-r educeable-ratl.pg

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-3 x-10}{x^{2}+12 x+20}, & x \neq-2 \\
C, & x=-2
\end{array}\right.
$$

What value of C would make $f(x)$ continuous at $x=-2$? \qquad

- Decimal approximations are not allowed for this problem.
- Compute the exact value for C and express your answer algebraically.

Correct Answers:

- $-7 / 8$

2. (1 point) setFinal1475/CityTechCalculussetLimits_-_Limit_Prope rtiesintermediate-properties.pg
Given that:

$$
\begin{array}{cl}
\lim _{x \rightarrow 6} f(x)=3 & \lim _{x \rightarrow-1} f(x)=7 \\
\lim _{x \rightarrow 6} g(x)=-7 & \lim _{x \rightarrow-1} g(x)=0
\end{array}
$$

Apply the properties of limits to solve the following problems. If the limit cannot be determined, write: unknown

1. $\lim _{x \rightarrow 6}\left(\frac{g(x)}{f(x)-3}\right)=$
2. $\lim _{x \rightarrow-1}\left(g^{2}(x)-3 f(x) g(x)-5 f^{2}(x)\right)=$ \qquad
3. $\lim _{x \rightarrow 6}(\sqrt{g(x)+12})=$ \qquad
4. $\lim _{x \rightarrow-1}(5)=$ \qquad

Correct Answers:

- unknown
- -245
- 2.23607
- 5

3. (1 point) setFinal1475/CityTechCalculussetLimits_-_Limit_Prope rtiesbasic-properties.pg
Given that:

$$
\begin{array}{ll}
\lim _{x \rightarrow-8} f(x)=-5 & \lim _{x \rightarrow-7} f(x)=6 \\
\lim _{x \rightarrow-8} g(x)=-7 & \lim _{x \rightarrow-7} g(x)=3
\end{array}
$$

Apply the properties of limits to solve the following problems:

1. $\lim _{x \rightarrow-7}\left(\frac{f^{2}(x)}{4 g(x)}\right)=$ \qquad
2. $\lim _{x \rightarrow-8}(4 f(x)+10 g(x))=$ \qquad
3. $\lim _{x \rightarrow-8}\left(f^{2}(x)-g^{2}(x)\right)=$ \qquad
4. $\lim _{x \rightarrow-8}(f(x)+g(x))=$ \qquad
Correct Answers:

- $36 / 12$
- -90
- -24
- -12

4. (1 point) setFinal1475/CityTechCalculussetLimits_-_One-Sidedin tro-piecewise_no_explanation.pg

One-sided Limits

Use the graphs to determine the value of each expression below:

Graph A

$f(-1)=$
$\lim _{x \rightarrow-1^{-}} f(x)=-$
$\lim _{x \rightarrow-1^{+}} f(x)=-$
$\lim _{x \rightarrow-1} f(x)=$ \qquad

Graph C

$$
\begin{gathered}
f(-1)=- \\
\lim _{x \rightarrow-1^{-}} f(x)=- \\
\lim _{x \rightarrow-1^{+}} f(x)=- \\
\lim _{x \rightarrow-1} f(x)=
\end{gathered}
$$

Graph B

$f(-1)=$ \qquad

$$
\lim _{x \rightarrow-1^{-}} f(x)=-
$$

$$
\lim _{x \rightarrow-1^{+}} f(x)=-
$$

$$
\lim _{x \rightarrow-1} f(x)=
$$

Graph D

$$
f(-1)=
$$

$$
\lim _{x \rightarrow-1^{-}} f(x)=
$$

$$
\lim _{x \rightarrow-1^{+}} f(x)=
$$

$$
\lim _{x \rightarrow-1} f(x)=
$$

\qquad

- all answers should be given as numbers
- if a result does not exist, respond with "DNE" or "undefined"

Correct Answers:

- -4; 2; 2; 2
- $-1 ;-2 ;-2 ;-2$
- 0; -1; -2; DNE
- 4; -3; -2; DNE

5. (1 point) setFinal1475/CityTechCalculussetLimits_-_One-Sidedeq uation-piecewise_no_explanation.pg

Use the given equations to determine the value of each expression below:

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{lr}
x+4, & x \leq-3 \\
5 x+14, & x>-3
\end{array}\right. \\
& g(x)= \begin{cases}-8 x+14, & x<2 \\
6 x-14, & x \geq 2\end{cases} \\
& f(-3)=- \\
& g(2)=- \\
& \lim _{x \rightarrow-3^{-}} f(x)=- \\
& \lim _{x \rightarrow 2^{-}} g(x)=- \\
& \lim _{x \rightarrow-3+} f(x)=- \\
& \lim _{x \rightarrow 2^{+}} g(x)=- \\
& \lim _{x \rightarrow-3} f(x)=- \\
& \lim _{x \rightarrow 2} g(x)=- \\
& \hline
\end{aligned}
$$

- all answers should be given as numbers
- if a result does not exist, respond with "DNE" or "undefined"

Correct Answers:

- 1; 1; -1; DNE
- -2 ; -2 ; -2 ; -2

6. (1 point) setFinal1475/LHopitals_Rule4.5.19wConstant.pg

Apply L'Hôpital's Rule to evaluate the following limit. It may be necessary to apply it more than once.
$\lim _{x \rightarrow-\infty} \frac{-x-7}{-4 x-1}=$ \qquad
Correct Answers:

- 1/4

7. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transcende ntals_Second_Edition/4_Applications_of_the_Derivative/4.5_LHop itals_Rule/4.5.22.pg

Use L'Hôpital's Rule (possibly more than once) to evaluate the following limit
$\lim _{x \rightarrow \infty}\left(\frac{3 x^{3}+9 x^{2}}{4 x^{3}-12}\right)=$ \qquad
If the answer equals ∞ or $-\infty$, write INF or -INF in the blank.
Correct Answers:

- 0.75

8. (1 point) Library/UCSB/Stewart5_4_4/Stewart5_4_4_10.pg

Find the limit. Use l'Hospital's Rule if appropriate. Use INF to represent positive infinity, NINF for negative infinity, and D for the limit does not exist.
$\lim _{x \rightarrow 0} \frac{x+\tan x}{9 \sin x}=$ \qquad
Correct Answers:

- 0.22222222222222

One-sided Limits
9. (1 point) Library/Michigan/Chap $4 \operatorname{Sec} 7 / 217 . p g$

Find the limit: $\lim _{x \rightarrow 3} \frac{\ln (x / 3)}{x^{2}-9}=$ \qquad
(Enter undefined if the limit does not exist.)
Correct Answers:

- $1 / 18$

10. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transcen dentals_Second_Edition/4_Applications_of_the_Derivative/4.5_LH opitals_Rule/4.5.40.pg

Apply L'Hôpital's Rule to evaluate the following limit. It may be necessary to apply it more than once.
$\lim _{x \rightarrow 1} \frac{\ln (x)}{e^{-x}-\frac{1}{e}}=$ \qquad
Correct Answers:

- -2.71828

11. (1 point) Library/UCSB/Stewart5_4_4/Stewart5_4_4_21.pg

Find the limit. Use l'Hospital's Rule if appropriate. Use INF to represent positive infinity, NINF for negative infinity, and D for the limit does not exist.
$\lim _{x \rightarrow 0} \frac{4 e^{x}-4-4 x}{10 x^{2}}=$ \qquad
Correct Answers:

- 0.2

12. (1 point) setFinal1475/Rogawski_Calculus_Early_Transcendenta ls3_Differentiation3.10_Implicit_Differentiation3.10.17.pg
Calculate the derivative of y with respect to x, if $x^{7}-9 x+y^{4}=$ 81.
$\frac{d y}{d x}=$ \qquad
Now find the equation of the tangent line to the curve at the point $(0,-3)$.
$y=$ \qquad
Correct Answers:

- $\left(9-7 * x^{\wedge} 6\right) /\left(4 * y^{\wedge} 3\right)$
- $-(0.0833333 * x+3)$

13. (1 point) setFina11475/Rogawski_Calculus_Early_Transcendenta ls_Second_Edition3_Differentiation3.10_Implicit_Differentiatio n3.10.11.pg
Calculate the derivative of y with respect to x, if $x^{3} y+3 x y^{3}=$ $x+y$.
$\frac{d y}{d x}=$ \qquad
Now find the equation of the tangent line to the curve at the point $(0,0)$.
$y=$ \qquad
Correct Answers:

- $\left(1-3 * x^{\wedge} 2 * y-3 * y^{\wedge} 3\right) /\left(x^{\wedge} 3+9 * x^{*} y^{\wedge} 2-1\right)$
- -x

14. (1 point) Library/UVA-Stew5e/setUVA-Stew5e-C03S06-ImplicitDi ff/3-6-01a.pg
Use implicit differentiation to find the slope of the tangent line to the curve defined by $3 x y^{4}+7 x y=40$ at the point $(4,1)$.

The slope of the tangent line to the curve at the given point is
Correct Answers:

- $-5 / 38$

15. (1 point) Library/UVA-Stew5e/setUVA-Stew5e-C03S06-ImplicitDi ff/3-6-20.pg
Find the slope of the tangent line to the curve

$$
4 \sin (x)+3 \cos (y)-3 \sin (x) \cos (y)+x=7 \pi
$$

at the point $(7 \pi, 3 \pi / 2)$.
Correct Answers:

- 1

16. (1 point) Library/OSU/high_school_apcalc/dcfrev/prob6.pg Find $\frac{d y}{d x}$ when $5 x^{2}+3 x^{3} y-3 y^{2}=56$.
$\frac{d y}{d x}=$ \qquad
The slope of the tangent line to this curve at the point $(2,2)$ is \qquad
The equation of the tangent line to this curve at this point is

$$
y=
$$

Correct Answers:

- $\left(10{ }^{*} x+9{ }^{*} x^{\wedge} 2 * y\right) /\left(6 * y-3 * x^{\wedge} 3\right)$
- $-23 / 3$
- $2-23 / 3^{*}(x-2)$

17. (1 point) Library/maCalcDB/setDerivatives2_5Implicit/s2_6_25 _mo.pg
Find an equation of the tangent line to the curve

$$
2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)
$$

(a lemniscate) at the point $(-3,1)$.
An equation of the tangent line to the lemniscate at the given point is \qquad
Correct Answers:

- $9 * x-13 * y=-40$

18. (1 point) setFinal1475/UMNcalculusStewartCCCs_3_5_23.pg Use implicit differentiation to find the derivative of y with respect to x and an equation of the tangent line to the ellipse defined by $2 x^{2}+2 x y+5 y^{2}=153$ at the point $(-2,-5)$.
$\frac{d y}{d x}=$ \qquad
An equation of the tangent line is $y=$ \qquad -.
Correct Answers:

- $-[(4 * x+2 * y) /(2 * x+10 * y)]$
- $x+3 * y=-17$

19. (1 point) setFinal1475/MichiganChap3Sec7Q29.pg

Find the slope of the tangent line to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$ at the point (x, y).
slope $=$ \qquad

Find the equation of the tangent line to the ellipse at the point on the ellipse with x-coordinate 2 and y-coordinate above the x -axis.
$y=$
Correct Answers:

- $-\left[25{ }^{*} \mathrm{x} /(9 * \mathrm{y})\right]$
- 3.72678-1.49071*(x-2)

20. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transcen dentals_Second_Edition/3_Differentiation/3.7_The_Chain_Rule/3. 7.1.pg

Given the following functions: $f(u)=u^{9 / 2}$ and $g(x)=x^{10}+1$. Find:
$f(g(x))=$ \qquad
$f^{\prime}(u)=$
$f^{\prime}(g(x))=$
\qquad
$g^{\prime}(x)=$
$(f \circ g)^{\prime}(x)=$ \qquad

Correct Answers:

- $\left(x^{\wedge} 10+1\right)^{\wedge}(9 / 2)$
- $9 / 2 * u^{\wedge}(9 / 2-1)$
- $9 / 2 *\left(x^{\wedge} 10+1\right)^{\wedge}(9 / 2-1)$
- $10 * x^{\wedge}(10-1)$
- $9 / 2^{*}\left(x^{\wedge} 10+1\right)^{\wedge}(9 / 2-1) * 10 * x^{\wedge}(10-1)$

21. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transcen dentals_Second_Edition/3_Differentiation/3.7_The_Chain_Rule/3. 7.5.pg

Let $y=(x+\sin (x))^{5}$.
Find $g(x)$ and $f(x)$ so that $y=(f \circ g)(x)$, and compute the derivative using the Chain Rule.
$f(x)=$ \qquad
$g(x)=$
$(f \circ g)^{\prime}=$
Correct Answers:

- $\mathrm{x}^{\wedge} 5$
- $x+\sin (x)$
- $5 *[1+1 * \cos (x)] *[1 * x+1 * \sin (x)]^{\wedge} 4$

22. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transcen dentals_Second_Edition/3_Differentiation/3.7_The_Chain_Rule/3. 7.7.pg

Calculate $\frac{d}{d x} \cos (u)$ for the following choices of $u(x)$:
$u(x)=9-x^{2}, \frac{d}{d x} \cos (u(x))=$ \qquad
$u(x)=x^{-5}, \frac{d}{d x} \cos (u(x))=$ \qquad
$u(x)=\tan (x), \frac{d}{d x} \cos (u(x))=$ \qquad

Correct Answers:

- $2{ }^{*} x^{*} \sin (9-x * * 2)$
- $5 * \sin \left(x^{* *}(-5)\right) / x^{* *}(5+1)$
- $-\sec (x) * * 2 * \sin (\tan (x))$

23. (1 point) Library/Utah/Calculus_I/set5_The_Derivative/1210s5 p2.pg
Let

$$
f(x)=\frac{x}{\cos x^{2}}
$$

$f^{\prime}(x)=$ \qquad
Correct Answers:

- $\left[\cos \left(x^{\wedge} 2\right)+2 \star x^{\wedge} 2 \star \sin \left(x^{\wedge} 2\right)\right] /\left(\left[\cos \left(x^{\wedge} 2\right)\right]^{\wedge} 2\right)$

24. (1 point) Library/Wiley/setAnton_Section_2.6/Question46.pg Find the equation of the tangent line to the graph of $y(x)=$ $4\left(x-\frac{1}{x}\right)^{4}$ at $x=2$.
Equation of the tangent line is $y=$ \qquad
Correct Answers:

- $67.5 * x-114.75$

25. (1 point) Library/UCSB/Stewart5_3_5/Stewart5_3_5_53.pg

Suppose that $F(x)=f(g(x))$ and $g(3)=6, g^{\prime}(3)=4, f^{\prime}(3)=$ 10 , and $f^{\prime}(6)=7$. Find $F^{\prime}(3)$.
$F^{\prime}(3)=$ \qquad
Correct Answers:

- 28

26. (1 point) Library/ma122DB/set5/s3_5_53.pg

Let $F(x)=f\left(x^{5}\right)$ and $G(x)=(f(x))^{5}$ and suppose that

$$
a^{4}=12, \quad f(a)=3, \quad f^{\prime}(a)=5, \quad f^{\prime}\left(a^{5}\right)=12
$$

Find $F^{\prime}(a)$ and $G^{\prime}(a)$.
$F^{\prime}(a)=$
$G^{\prime}(a)=$
Correct Answers:

- $5 * 12 * 12$
- $5^{*}\left(3^{\wedge} 4\right) * 5$

27. (1 point) Library/ma122DB/set5/s3_5_55.pg

Let $F(x)=f(f(x))$ and $G(x)=(F(x))^{2}$ and suppose that

$$
f(3)=15, \quad f(15)=3, \quad f^{\prime}(15)=8, \quad f^{\prime}(3)=7
$$

Find $F^{\prime}(3)$ and $G^{\prime}(3)$.
$F^{\prime}(3)=$
$G^{\prime}(3)=$
Correct Answers:

- $8 * 7$
- $2 * 3 * 8 * 7$

28. (1 point) Library/UVA-Stew5e/setUVA-Stew5e-C03S02-ProdQuotRu les/3-2-31b.pg
Consider the functions $f(x)$ and $g(x)$, for which $f(0)=4$, $g(0)=5, f^{\prime}(0)=11$, and $g^{\prime}(0)=-8$.

Find $h^{\prime}(0)$ for the function $h(x)=\frac{f(x)}{g(x)}$.
$h^{\prime}(0)=$ \qquad
Correct Answers:

- $\left(5^{*} 11-4 *-8\right) /\left(5^{\wedge} 2\right)$

29. (1 point) Library/UVA-Stew5e/setUVA-Stew5e-C03S02-ProdQuotRu les/3-2-34.pg
Consider the function $h(x)$, for which $h(4)=-3$ and $h^{\prime}(4)=7$.
Find $f^{\prime}(4)$ for the function $f(x)=\frac{h(x)}{x}$.
$f^{\prime}(4)=$ \qquad
Correct Answers:

- 7/4--3/(4^2)

30. (1 point) Library/UVA-Stew5e/setUVA-Stew5e-C03S02-ProdQuotRu les/3-2-31d.pg
Consider the function $f(x)$, for which $f(0)=6$ and $f^{\prime}(0)=-5$.
Find $h^{\prime}(0)$ for the function $h(x)=\frac{1}{f(x)}$.
$h^{\prime}(0)=$ \qquad
Correct Answers:

- $-(-5) /\left(6^{\wedge} 2\right)$

31. (1 point) Library/AlfredUniv/ant on8e/chapter3/3.4/prob9.pg Find $g^{\prime}(3)$ given that $f(3)=-2, f^{\prime}(3)=4$, and $g(x)=\frac{2 x+1}{f(x)}$.

Answer: \qquad
Correct Answers:

- -8

32. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transcen dentals_Second_Edition/3_Differentiation/3.3_Product_and_Quoti ent_Rules/3.3.23.pg

Compute the derivative:

$$
\left.\frac{d}{d x}\left(\frac{x^{4}-4}{x^{2}-5}\right)\right|_{x=2}
$$

The derivative is: \qquad
Correct Answers:

- $-80 / 1$

33. (1 point) Library/Union/setDervProductQuotientRule/3-5-19.pg Let f and g be functions such that

$$
\begin{gathered}
f(0)=7, \quad g(0)=9, \\
f^{\prime}(0)=-11, \quad g^{\prime}(0)=-5 .
\end{gathered}
$$

Find $h^{\prime}(0)$ for the function $h(x)=g(x) f(x)$.
$h^{\prime}(0)=$ \qquad
Correct Answers:

- $-5 * 7+-11 * 9$

34. (1 point) Library/Rochester/setDerivatives2Formulas/d3.pg Given that

$$
\begin{aligned}
f(x) & =x^{5} h(x) \\
h(-1) & =3 \\
h^{\prime}(-1) & =6
\end{aligned}
$$

calculate $f^{\prime}(-1)$. \qquad
[HINT: Use the product rule and the power rule.] Correct Answers:

- $3 * 5 * 1+6 *-1$

35. (1 point) Library/AlfredUniv/anton8e/chapter3/3.4/prob7.pg Find $g^{\prime}(4)$ given that $f(4)=-1, f^{\prime}(4)=-1$, and $g(x)=$ $\sqrt{x} f(x)$.

Answer: \qquad
Correct Answers:

- -2.25

36. (1 point) Library/Westmont/ActiveCalculus/Preview_2_3/previe
w_2_3_abc.pg
Let f and g be the functions defined by $f(t)=4 t^{2}$ and $g(t)=$ $t^{3}+2 t$.
Determine $f^{\prime}(t)$ and $g^{\prime}(t)$.
$f^{\prime}(t)=$
$g^{\prime}(t)=$ \qquad
Let $p(t)=4 t^{2}\left(t^{3}+2 t\right)$ and observe that $p(t)=f(t) \cdot g(t)$. Rewrite the formula for p by distributing the $4 t^{2}$ term. Then, compute $p^{\prime}(t)$ using the sum and constant multiple rules. $p^{\prime}(t)=$ \qquad
True or False: $p^{\prime}(t)=f^{\prime}(t) \cdot g^{\prime}(t)$ [?/True/False]
Correct Answers:

- $4 * 2 * t$
- $3 * t^{\wedge} 2+2$
- $4 * 5 * t \wedge 4+8 * 3 * t \wedge 2$
- False

37. (1 point) Library/Union/setDervProductQuotientRule/s2_2_13.pg Let $f(t)=\left(t^{2}+4 t+2\right)\left(2 t^{2}+6\right)$. Find $f^{\prime}(t)$.
$f^{\prime}(t)=$ \qquad
Find $f^{\prime}(4)$.
$f^{\prime}(4)=$
Correct Answers:

- $(2 * t+4) *(2 * t \wedge 2+6)+\left(t^{\wedge} 2+4 * t+2\right) * 2 * 2 * t$
- 1000

38. (1 point) Library/UCSB/Stewart5_3_2/Stewart5_3_2_10.pg

Differentiate:

$$
Y(u)=\left(u^{-2}+u^{-3}\right)\left(u^{5}+5 u^{2}\right)
$$

$Y^{\prime}(u)=$
Correct Answers:

- $\left[-2 * u^{\wedge}(-3)-3 * u^{\wedge}(-4)\right]^{*}\left(u^{\wedge} 5+5 * u^{\wedge} 2\right)+\left[u^{\wedge}(-2)+u^{\wedge}(-3)\right] *$

39. (1 point) Library/UCSB/Stewart5_3_4/Stewart5_3_4_28.pg If $f(x)=\sqrt{x} \sin x$, find $f^{\prime}(x)$.
$f^{\prime}(x)=$ \qquad
Correct Answers:

- $x^{\wedge}(1 / 2) * \cos (x)+1 / 2 * x^{\wedge}(-1 / 2) * \sin (x)$

40. (1 point) Library/Union/setDervTrigonometric/s2_4_25.pg

Let $f(x)=\frac{2 \tan (x)}{x}$. Find the following:

1. $f^{\prime}(x)=$
2. $f^{\prime}(1)=$
\qquad

Correct Answers:

- $\left(2 *[\sec (x)]^{\wedge} 2 * x-2 * \tan (x)\right) /\left(x^{\wedge} 2\right)$
- 3.73622

41. (1 point) Library/UVA-Stew5e/setUVA-Stew5e-C03S04-DerivsTrig /3-4-25.pg
Find the equation of the line that is tangent to the curve

$$
y=5 x \cos x
$$

at the point $(\pi,-5 \pi)$.
The equation of this tangent line can be written in the form $y=m x+b$ where
$m=$ \qquad
and $b=$ \qquad
Correct Answers:

- -5
- 0

42. (1 point) Library/UVA-Stew5e/setUVA-Stew5e-C03S04-DerivsTrig /3-4-24.pg
Find the equation of the tangent line to the curve

$$
y=\frac{1}{2 \sin x+2 \cos x}
$$

at the point $(0,1 / 2)$.
The equation of this tangent line can be written in the form $y=m x+b$ where
$m=$ \qquad
and $b=$ \qquad
Correct Answers:

- -0.5
- 0.5

43. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transcen dentals_Second_Edition/3_Differentiation/3.9_Derivatives_of_Ge neral_Exponential_and_Logarithmic_Functions/3.9.45.pg
*Finfd ${ }^{2}$ the ${ }^{5}$ derivative by one of following two methods: rewrite using $f(x)=e^{\ln f(x)}$ or use logarithmic differentiation.
$y=x^{2 x}$
$y^{\prime}=$ \qquad
Correct Answers:

- $\mathrm{x}^{\wedge}(2 \star \mathrm{x}) *[2+2 \star \ln (\mathrm{x})]$

44. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transcen dentals_Second_Edition/3_Differentiation/3.9_Derivatives_of_Ge neral_Exponential_and_Logarithmic_Functions/3.9.49.pg

Find the derivative of $y=x^{3^{x}}$.
$d y / d x=$ \qquad
Correct Answers:

- $x^{\wedge}\left(3^{\wedge} x\right)^{\star}\left[1.09861 * 3^{\wedge} x^{\star} \ln (x)+3^{\wedge} x / x\right]$

45. (1 point) Library/Wiley/setAnton_Section_3.3/Question32.pg Find $d y / d x$ using the method of logarithmic differentiation when $y=x^{8 \sin (x)}$.
$d y / d x=$ \qquad
Correct Answers:

- $8 * x^{\wedge}[8 * \sin (x)] *[\cos (x) * \ln (x)+[\sin (x)] / x]$

46. (1 point) Library/Wiley/setAnton_Section_3.3/Question $34 . p g$ Find $d y / d x$ using the method of logarithmic differentiation when $y=\left(5+5 x^{2}\right)^{\ln (x)}$.
$d y / d x=$

Correct Answers:

- $\left(5+5 * x^{\wedge} 2\right)^{\wedge}[\ln (x)] *\left[10 * x^{*} \ln (x) /\left(5+5 * x^{\wedge} 2\right)+\left[\ln \left(5+5 * x^{\wedge}\right.\right.\right.$

47. (1 point) Library/ASU-topics/setDerivativeFunction/3-3-05.pg Suppose that

$$
f(x+h)-f(x)=-2 h x^{2}-6 h x+3 h^{2} x-2 h^{2}-5 h^{3}
$$

Find $f^{\prime}(x)$.
$f^{\prime}(x)=$ \qquad
Correct Answers:

- $-2 *^{*}{ }^{*} * 2+-6 * x$

48. (1 point) setFinal1475/Rogawski_Calculus3_Differentiation3.1 1_Related_Rates3.11.3.pg

The radius of a circular oil slick expands at a rate of $6 \mathrm{~m} / \mathrm{min}$.
(a) How fast is the area of the oil slick increasing when the radius is 26 m ?

$$
\frac{d A}{d t}=
$$

(b) How fast is the radius increasing when the area is $750 \mathrm{~m}^{2}$? $\frac{d r}{d t}=\xlongequal[C o r r e c t \text { Answers: }]{ } \mathrm{m} / \mathrm{min}$

- 980.176907920015
- 6

49. (1 point) setFinal1475/04-06-Related-rates-02.pg

Suppose that water is pouring into a swimming pool in the shape of a right circular cylinder at a constant rate of 3 cubic feet per minute. If the pool has radius 4 feet and height 9 feet, what is the rate of change of the height of the water in the pool when the depth of the water in the pool is 7 feet?
The volume of a right circular cylinder is given by

$$
V=\pi r^{2} h
$$

where r is the radius of the base and h is the height of the cylinder.

$$
\ldots \mathrm{ft} / \mathrm{min}
$$

Correct Answers:

- $3 /\left(\mathrm{pi} * 4^{\wedge} 2\right)$

50. (1 point) setFinal1475/Bucket06-Related-rates-03.pg

A potter forms a piece of clay into a right circular cylinder. As she rolls it, the height h of the cylinder increases and the radius r decreases. Assume that no clay is lost in the process. Suppose the height of the cylinder is increasing by 0.5 centimeters per second. What is the rate at which the radius is changing when the radius is 6 centimeters and the height is 9 centimeters?
The volume of a right circular cylinder is given by

$$
V=\pi r^{2} h,
$$

where r is the radius of the base and h is the height of the cylinder.

) $/ \mathrm{x}$]

\qquad cm / s.
Correct Answers:

- $-(6 * 0.5) /(2 * 9)$

51. (1 point) setFinal1475/Bucket06ApplicationsRelatedRatess2_8_ 21.pg

Gravel is being dumped from a conveyor belt at a rate of 20 $\mathrm{ft}^{3} / \mathrm{min}$. It forms a pile in the shape of a right circular cone whose base diameter and height are always the same. How fast is the height of the pile increasing when the pile is 10 ft high? The volume of a circular cone is

$$
V=\frac{1}{3} \pi r^{2} h
$$

where r if the radius of the base and h is the height of the cone.

The height is increasing at \qquad $\mathrm{ft} / \mathrm{min}$. Correct Answers:

- 0.254648

52. (1 point) setFinal1475/Bucket06ApplicationsRelatedRatesan3_7 _25.pg
A conical water tank with vertex down has a radius of 11 feet at the top and is 23 feet high. If water flows into the tank at a rate of $30 \mathrm{ft}^{3} / \mathrm{min}$, how fast is the depth of the water increasing when the water is 16 feet deep?
The volume of a circular cone is

$$
V=\frac{1}{3} \pi r^{2} h
$$

where r if the radius of the base and h is the height of the cone.

The depth of the water is increasing at \qquad $\mathrm{ft} / \mathrm{min}$. Correct Answers:

- 0.16308

53. (1 point) setFinal1475/Bucket06Applications3.11_Related_Rate s3.11.5.pg
54. Assume that the radius r of a sphere is expanding at a rate of $14 \mathrm{in} / \mathrm{min}$ The volume of a sphere is $V=\frac{4}{3} \pi r^{3}$.
Determine the rate at which the volume is changing with respect to time when $r=15 \mathrm{in}$.
The volume is changing at a rate of \qquad $\mathrm{in}^{3} / \mathrm{min}$.
55. Assume that the volume V of a sphere is expanding at a rate of $500 \mathrm{in}^{3} / \mathrm{min}$ The volume of a sphere is $V=\frac{4}{3} \pi r^{3}$.
Determine the rate at which the radius is changing with respect to time when $r=4 \mathrm{in}$.
The radius is changing at a rate of \qquad in/min.
Correct Answers:

- 39584.1
- 2.4868

54. (1 point) setFinal1475/Bucket06ApplicationsRelatedRatesImpli citDerivatives5-5-14.pg
55. The radius of a spherical balloon is increasing at a rate of 3 centimeters per minute. How fast is the surface area changing when the radius is 14 centimeters?
Hint: The surface area is $S=4 \pi r^{2}$.
Rate of change of surface area $=$ \qquad cm^{2} / \min
56. The surface area of a spherical balloon is increasing at a rate of 32 centimeters per minute. How fast is the radius changing when the radius is 14 centimeters?

Rate of change of radius $=$ \qquad cm/min

Correct Answers:

- 1055.57513160624
- 0.0909456817667913

55. (1 point) Library/Michigan/Chap4Sec5/Q17.pg

If you have 200 meters of fencing and want to enclose a rectangular area up against a long, straight wall, what is the largest area you can enclose?
Area $=\longrightarrow$ (include units)
Correct Answers:

- 5000 m^2

56. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transcen dentals_Second_Edition/4_Applications_of_the_Derivative/4.7_Ap plied_Optimization/4.7.23.pg

A landscape architect wished to enclose a rectangular garden on one side by a brick wall costing $\$ 30 / \mathrm{ft}$ and on the other three sides by a metal fence costing $\$ 20 / \mathrm{ft}$. If the area of the garden is

162 square feet, find the dimensions of the garden that minimize the cost.
Length of side with bricks $x=$ \qquad
Length of adjacent side $y=$ \qquad
Correct Answers:

- $\operatorname{sqrt}(2 * 20 * 162 /(20+30))$
- $(20+30) /(2 * 20) * \operatorname{sqrt}(2 * 20 * 162 /(20+30))$

57. (1 point) setFinal1475/Library/WHFreeman/Rogawski_Calculus_E arly_Transcendentals_Second_Edition/4_Applications_of_the_Deri vative/4.7_Applied_Optimization/4.7.4.pg

Find a positive number x such that the sum of $36 x$ and $\frac{1}{x}$ is as small as possible.
$x=$ \qquad

Correct Answers:

- 0.166666666666667

58. (1 point) Library/Rochester/setDerivatives10_50ptim/S04.07.0 ptimization.PTP06.pg
If 1300 square centimeters of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

Volume $=$ \qquad (include units)
Correct Answers:

- $4510.28 \mathrm{~cm}^{\wedge} 3$

59. (1 point) Library/Rochester/setDerivatives10_50ptim/S04.07.0 ptimization.PTP07.pg
A box with an open top has vertical sides, a square bottom, and a volume of 4 cubic meters. If the box has the least possible surface area, find its dimensions.
Height = \qquad (include units)
Length of base = \qquad (include units)
Correct Answers:

- 1 m
- 2 m

60. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transcen dentals_Second_Edition/4_Applications_of_the_Derivative/4.7_Ap plied_Optimization/4.7.47.pg

A box (with no top) is to be constructed from a piece of cardboard of sides A and B by cutting out squares of length h from the corners and folding up the sides as in the figure below:

Suppose that the box height is $h=5 \mathrm{in}$. and that it is constructed using 153 in. ${ }^{2}$ of cardboard (i.e., $A B=153$). Which values A and B maximize the volume?
$A=$ \qquad in.
$B=$ \qquad in.

Correct Answers:

- 12.3693
- 12.3693

61. (1 point) Library/UVA-Stew5e/setUVA-Stew5e-C04S07-Optimizati on/4-7-29.pg
The top and bottom margins of a poster are 6 cm and the side margins are each 2 cm . If the area of printed material on the poster is fixed at 388 square centimeters, find the dimensions of the poster with the smallest area.
Width $=$ \qquad Height $=$ \qquad
Correct Answers:

- 15.3724814061547
- 46.117444218464

62. (1 point) Library/Wiley/setAnton_Section_2.2/Question7.pg Given that $f(9)=9$ and $f^{\prime}(9)=1$, find an equation for the tangent line to the graph of $y=f(x)$ at $x=9$.
$y=$ \qquad
Correct Answers:

- $1{ }^{*} \mathrm{x}+0$

63. (1 point) setFinal1475/Stewart5_3_11/Stewart5_3_11_8.pg
(a) Find the equation of the tangent line to $f(x)=\sqrt[3]{x}$ at $x=125$. $y=$ \qquad
(b) Use your answer to part (a) to estimate the value of $\sqrt[3]{124.6}$. $\sqrt[3]{124.6} \approx$ \qquad
Correct Answers:

- $\mathrm{x} /(3 * 5 * * 2)+2 * 5 / 3$
- $-0.4 /(3 * 5 * * 2)+5$

64. (1 point) setFinal1475/Rogawski_Calculus_Early_Transcendenta ls_Second_Edition4_Applications_of_the_Derivative4.1_Linear_Ap proximation_and_Applications4.1.49.pg
(a) Find the equation of the tangent line to $f(x)=(25+x)^{-1 / 2}$ at $x=0$
$y=$
(b) Use your answer to part (a) to estimate the value of $(24.8)^{-1 / 2}$.
$(24.8)^{-1 / 2} \approx$ \qquad
Correct Answers:

- $0.2+(-0.004)$ * $(\mathrm{x}-0)$
- 0.2008

65. (1 point) setFinal1475/4_Applications_of_the_Derivative4.1_L inear_Approximation_and_Applications 4.1.51.pg
(a) Find the equation of the tangent line to $f(x)=\left(81+4 x^{2}\right)^{-1 / 2}$ at $x=0$.
$y=$ \qquad
(b) Use your answer to (a) to estimate the value of $80.6^{-1 / 2}$. $80.6^{-1 / 2} \approx$ \qquad
Correct Answers:

- 0.111111
- 0.111111

66. (1 point) setFinal1475/Bucket08ApplicationsLinearizationStew art5_3_11_11.pg
(a) Find the equation of the tangent line to $f(x)=\sqrt[6]{1-x}$ at $x=0$.
$y=$
(b) Use your answer to part (a) to estimate the value of $\sqrt[6]{0.7}$ $\sqrt[6]{0.7} \approx$ \qquad
Correct Answers:

- $1-\mathrm{x} / 6$
- 1-0.3/6

67. (1 point) Library/Michigan/Chap2Sec2/011.pg

Suppose that $f(x)$ is a function with $f(120)=40$ and $f^{\prime}(120)=$ 6. Estimate $f(116.5)$.
$f(116.5)=$ \qquad
Correct Answers:

- 19

68. (1 point) Library/UVA-Stew5e/setUVA-Stew5e-C03S11-LinApprox/ 3-11-23.pg
Let $y=\left(x^{2}+4\right)^{5}$.
Find the differential $d y$ when $x=3$ and $d x=0.3$ \qquad
Find the differential $d y$ when $x=3$ and $d x=0.05$ \qquad
Correct Answers:

- 257049
- 42841.5

69. (1 point) Library/UVA-Stew5e/setUVA-Stew5e-C03S11-LinApprox/ 3-11-24.pg
Let $y=\sqrt{7-x}$.
Find the differential $d y$ when $x=1$ and $d x=0.2$ \qquad
Find the differential $d y$ when $x=1$ and $d x=0.05$ \qquad
Correct Answers:

- -0.0408248290463863
- -0.0102062072615966
$\overline{\text { 70. (1 point) Library/UVA-Stew5e/setUVA-Stew5e-C03S11-LinApprox/ }}$ 3-11-22.pg
Let $y=e^{x / 1}$.
Find the differential $d y$ when $x=3$ and $d x=0.4$ \qquad
Find the differential $d y$ when $x=3$ and $d x=0.04$
Correct Answers:
- 8.03421476927507
- 0.803421476927507

71. (1 point) Library/UVA-Stew5e/setUVA-Stew5e-C04S05-CurveSketc h/4-5-07.pg
Suppose that

$$
f(x)=\frac{4 x-6}{x+6}
$$

(A) Find all critical values of f. If there are no critical values, enter None. If there are more than one, enter them separated by commas.
Critical value $(\mathrm{s})=$ \qquad
(B) Use interval notation to indicate where $f(x)$ is increasing. If it is increasing on more than one interval, enter the union of all intervals where $f(x)$ is increasing.
Increasing:
(C) Use interval notation to indicate where $f(x)$ is decreasing. If it is decreasing on more than one interval, enter the union of all intervals where $f(x)$ is decreasing.
Decreasing:
(D) Find the x-coordinates of all local maxima of f. If there are no local maxima, enter None. If there are more than one, enter them separated by commas.
Local maxima at $x=$ \qquad
(E) Find the x-coordinates of all local minima of f. If there are no local minima, enter None. If there are more than one, enter them separated by commas.
Local minima at $x=$ \qquad
(F) Use interval notation to indicate where $f(x)$ is concave up.
Concave up: \qquad
(G) Use interval notation to indicate where $f(x)$ is concave down.
Concave down:
(H) Find all inflection points of f. If there are no inflection points, enter None. If there are more than one, enter them separated by commas.
Inflection point(s) at $x=$
(I) Find all horizontal asymptotes of f. If there are no horizontal asymptotes, enter None. If there are more than one, enter them separated by commas.
Horizontal asymptote(s): $y=$ \qquad
(J) Find all vertical asymptotes of f. If there are no vertical asymptotes, enter None. If there are more than one, enter them separated by commas.
Vertical asymptote(s): $x=$ \qquad
(K) Use all of the preceding information to sketch a graph of f. When you're finished, enter a 1 in the box below.
Graph Complete: \qquad
Correct Answers:

- None
- (-infinity,-6) U (-6,infinity)
- \{\}
- None
- None
- (-infinity,-6)
- (-6,infinity)
- None
- 4
- - 6
- 1

72. (1 point) Library/ASU-topics/setSecondDerivative/4-4-72.pg Suppose that

$$
f(x)=\frac{3 x^{2}}{x^{2}+36}
$$

(A) List all the critical values of $f(x)$. Note: If there are no critical values, enter 'NONE'.
(B) Use interval notation to indicate where $f(x)$ is increasing.

Note: Use 'INF' for ∞, '-INF' for $-\infty$, and use 'U' for the union symbol. If there is no interval, enter 'NONE'.
Increasing:
(C) Use interval notation to indicate where $f(x)$ is decreasing. Decreasing:
(D) List the x values of all local maxima of $f(x)$. If there are no local maxima, enter 'NONE'.
x values of local maximums $=$ \qquad
(E) List the x values of all local minima of $f(x)$. If there are no local minima, enter 'NONE'.
x values of local minimums $=$ \qquad
(F) Use interval notation to indicate where $f(x)$ is concave up. Concave up:
(G) Use interval notation to indicate where $f(x)$ is concave down.
Concave down:
(H) List the x values of all the inflection points of f. If there are no inflection points, enter 'NONE'.
x values of inflection points $=$ \qquad
(I) Find all horizontal asymptotes of f, and list the y values below. If there are no horizontal asymptotes, enter 'NONE' y values of horizontal asymptotes $=$ \qquad
(J) Find all vertical asymptotes of f, and list the x values below.

If there are no vertical asymptotes, enter 'NONE'
x values of vertical asymptotes $=$ \qquad
(K) Use all of the preceding information to sketch a graph of f. When you're finished, enter a " 1 " in the box below.
Graph complete: \qquad
Correct Answers:

- 0
- (0,infinity)
- (-infinity,0)
- none
- 0
- (-3.46410161513775,3.46410161513775)
- (-infinity,-3.46410161513775) U (3.46410161513775,
- $-3.46410161513775,3.46410161513775$
- 3
- none
- 1

73. (1 point) setPFinal1475Bucket09ApplicationsShape/S04.05.Curv eSketching.PTP03.pg
Please answer the following questions about the function

$$
f(x)=\frac{5}{x^{2}-4}
$$

Instructions: If you are asked to find a function, enter a function. If you are asked to find x - or y-values, enter either a number, a list of numbers separated by commas, or None if there aren't any solutions. Use interval notation if you are asked to find an interval or union of intervals, and enter $\}$ if the interval is empty.

Calculate the first derivative of f. Find the critical numbers of f, where it is increasing and decreasing, and its local extrema.
(a) $f^{\prime}(x)=$ \qquad
(b) Critical numbers $x=$
(c) Increasing on the interval
(d) Decreasing on the interval
(e) Local maxima $x=$ \qquad
(f) Local minima $x=$

Correct Answers:

- $-(10$ * $x) /\left(\left(x^{* *} 2-4\right) * * 2\right)$
- 0
- (-infinity, -2) U ($-2,0$)
- $(0,2)$ U $(2$, infinity $)$
- 0
- None

74. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transcen dentals_Second_Edition/4_Applications_of_the_Derivative/4.3_Th
e_Mean_Value_Theorem_and_Monotonicity/4.3.30.pg

Find the critical points and determine if the function is increasing or decreasing on the given intervals.
$y=6 x^{4}+4 x^{3}$
Left critical point: $c_{1}=$
Right critical point: $c_{2}=$
The function is:
? on $\left(-\infty, c_{1}\right)$.
? on $\left(c_{1}, c_{2}\right)$.
? on $\left(c_{2}, \infty\right)$.
Correct Answers:

- -0.5
- 0
- Decreasing
- Increasing
- Increasing

75. (1 point) Library/Michigan/Chap4Sec1/809.pg

For the function $f(x)=-2 x^{3}+24 x+3$, find all intervals where the function is increasing: f is increasing on
(Give your answer as an interval or a list of intervals, e.g., (infinity,8] or $(\mathbf{1 , 5}),(\mathbf{7}, \mathbf{1 0})$.)
Similarly, find all intervals where the function is decreasing: f is decreasing on \qquad
(Give your answer as an interval or a list of intervals, e.g., (-
infinity,8] or $(\mathbf{1 , 5}),(\mathbf{7 , 1 0})$.)
Finally, find all critical points in the graph of $f(x)$
critical points: $x=$ \qquad
(Enter your x-values as a comma-separated list, or none if there are no critical points.)
Correct Answers:

- $(-2,2)$
- (-infinity,-2), (2,infinity)
- $-2,2$

76. (1 point) Library/ASU-topics/setFirstDerivative/4-2-31.pg

Let

$$
f(x)=5+2 x-x^{3}
$$

(A) Use interval notation to indicate where $f(x)$ is increasing.

Note: Use 'INF' for ∞, '-INF' for $-\infty$, and use 'U' for the union symbol.
Increasing:
(B) Use interval notation to indicate where $f(x)$ is decreasing. Decreasing:
(C) List the x values of all local maxima of f. If there are no local maxima, enter 'NONE'.
x values of local maximums $=$ \qquad
(D) List the x values of all local minima of f. If there are no local minima, enter 'NONE'.
x values of local minimums $=$ \qquad
Correct Answers:

- ($-0.816496580927726,0.816496580927726)$
- (-infinity,-0.816496580927726) u (0.81649658092772(6,infinity)
- 0.816496580927726
- -0.816496580927726

77. (1 point) Library/ASU-topics/setSecondDerivative/4-4-50.pg Suppose that $f(x)=x^{4}-5 x^{3}$.
(A) List all the critical values of $f(x)$. Note: If there are no critical values, enter 'NONE'.
(B) Use interval notation to indicate where $f(x)$ is increasing.

Note: Use 'INF' for ∞, '-INF' for $-\infty$, and use 'U' for the union symbol.
Increasing:
(C) Use interval notation to indicate where $f(x)$ is decreasing. Decreasing:
(D) List the x values of all local maxima of $f(x)$. If there are no local maxima, enter 'NONE'.
x values of local maximums $=$ \qquad
(E) List the x values of all local minima of $f(x)$. If there are no local minima, enter 'NONE'.
x values of local minimums $=$ \qquad (F) Use interval notation to indicate where $f(x)$ is concave up.
Concave up:
(G) Use interval notation to indicate where $f(x)$ is concave down.
Concave down:
(H) List the x values of all the inflection points of f. If there are no inflection points, enter 'NONE'.
x values of inflection points $=$
(I) Use all of the preceding information to sketch a graph of f. When you're finished, enter a " 1 " in the box below.

Correct Answers:

- 0, 3.75
- (3.75,infinity)
- (-infinity, 3.75)
- none
- 3.75
- (-infinity,0) U (2.5,infinity)
- $(0,2.5)$
- $0,2.5$
- 1

78. (1 point) Library/Valdosta/APEX_Calculus/2.1/APEX_2.1_30.pg Using the graph of $g(x)$ below, answer the following questions.

a) Where is $g(x)>0$? \qquad (Enter an interval)
b) Where is $g(x)<0$? \qquad (Enter an interval)
c) Where is $g(x)=0$? \qquad (Enter a list of values, separated by commas)
d) Where is $g^{\prime}(x)>0 ? ~$ (Enter an interval)
e) Where is $g^{\prime}(x)<0$? \qquad (Enter an interval) f) Where is $g^{\prime}(x)=0$? \qquad (Enter a list of values, separated by commas)
NOTE: When using interval notation in WeBWorK, remember that:
You use 'INF' for ∞ and '-INF' for $-\infty$.
And use 'U' for the union symbol.
Correct Answers:

- $(-14,-8)$ U $(-2,4)$
- $(-8,-2)$
- $-14,-8,-2,4$
- $(-14,-11)$ U $(-5,1)$
- $(-11,-5)$ U $(1,4)$
- $-11,-5,1$

79. (1 point) Library/UVA-Stew5e/setUVA-Stew5e-C05S04-IndefInts/ 5-4-08.pg
Evaluate the indefinite integral:

$$
\int x\left(5+4 x^{6}\right) d x=\square+C
$$

Correct Answers:

- $(5 / 2){ }^{*} x^{* *} 2+(4 /(6+2)){ }^{*} x^{* *}(6+2)$

80. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transcen dentals_Second_Edition/4_Applications_of_the_Derivative/4.9_An tiderivatives/4.9.27.pg

Evaluate the following indefinite integral.
$\int \frac{5}{t^{7}} d t=$ \qquad $+C$

Correct Answers:

- - [5/(6*t^6)]

81. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transcen dentals_Second_Edition/4_Applications_of_the_Derivative/4.9_An tiderivatives/4.9.17.pg

Evaluate the following indefinite integral $\int x^{-5 / 8} d x=$
\qquad $+C$

Correct Answers:

- $\mathrm{x}^{\wedge}(0.375) / 0.375$

82. (1 point) Library/UVA-Stew5e/setUVA-Stew5e-C05S04-IndefInts/

5-4-05b.pg
Evaluate the indefinite integral:
$\int \frac{d u}{3 \sqrt{u}}=$ \qquad $+C$.

Correct Answers:

- $(2 / 3) * u^{* *}(1 / 2)$

83. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transcen dentals_Second_Edition/4_Applications_of_the_Derivative/4.9_An tiderivatives/4.9.33.pg

Evaluate the following indefinite integral $\int 7 \sin (x)-$ $5 \cos (x) d x=$ \qquad $+C$

Correct Answers:

$$
\text { - }-7 * \cos (x)-5 * \sin (x)
$$

84. (1 point) Library/UVA-Stew5e/setUVA-Stew5e-C05S04-IndefInts/ 5-4-05f.pg
Evaluate the indefinite integral:
$\int \frac{2-7 x e^{x}}{x} d x=$ \qquad $+C$.

Correct Answers:

$$
\text { - }-7 \star \exp (x)+2 \star \ln (\operatorname{abs}(x))
$$

85. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transcen dentals_Second_Edition/4_Applications_of_the_Derivative/4.9_An tiderivatives/4.9.66.pg

First find f^{\prime} and then find f.
$f^{\prime \prime}(x)=9 x^{2}-10 x^{3}-9 x-6$,
$f^{\prime}(1)=-2$,
$f(1)=2$.
$f^{\prime}(x)=$
$f(x)=$ \qquad
Correct Answers:

- $3 * x^{\wedge} 3-5 / 2 * x^{\wedge} 4-9 / 2 * x^{\wedge} 2-6 * x+8$
- $3 / 4 * x^{\wedge} 4-1 / 2 * x^{\wedge} 5-3 / 2 * x^{\wedge} 3-3 * x^{\wedge} 2+8 * x-7 / 4$

86. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transcen dentals_Second_Edition/4_Applications_of_the_Derivative/4.9_An tiderivatives/4.9.68.pg

Given that $f^{\prime \prime}(x)=\cos (x), f^{\prime}(\pi / 2)=3$ and $f(\pi / 2)=11$ find:
$f^{\prime}(x)=$ \qquad
$f(x)=$ \qquad

Correct Answers:

- $\sin (\mathrm{x})+2$
- $-[\cos (x)]+2 * x+11-2 * p i / 2$

87. (1 point) Library/UCSB/Stewart5_5_2/Stewart5_5_2_34/Stewart5 _5_2_34.pg

Consider the graph of the function $g(x)$:

The graph from $x=2$ to $x=6$ is a semicircle. Evaluate the following integrals by interpreting them in terms of areas:
(a) $\int_{0}^{2} g(x) d x=$ \qquad
(b) $\int_{2}^{6} g(x) d x=$ \qquad
(c) $\int_{0}^{7} g(x) d x=$ \qquad
Correct Answers:

- 4
- $-2 * \mathrm{pi}$
- 4.5-2*pi

88. (1 point) Library/whFreeman/Rogawski_Calculus_Early_Transcen dentals_Second_Edition/5_The_Integral/5.2_The_Definite_Integra 1/5.2.13.pg

Evaluate the integrals for $f(x)$ shown in the figure below. The two parts of the graph are semicircles.

a) $\int_{0}^{2} 5 f(x) d x=$
b) $\int_{0}^{6} 4 f(x) d x=$
\qquad
c) $\int_{1}^{4} 3 f(x) d x=$
d) $\int_{1}^{6}|2 f(x)| d x=$

Correct Answers:

- -7.85398
- 18.8496
- 7.06858
- 14.1372

89. (1 point) Library/Union/setIntDefinite/osu_in_3_3.pg

Evaluate the definite integral.
$\int_{4}^{5} \frac{4 x^{2}+2}{x^{2}} d x=$
Correct Answers:

- 4.1

90. (1 point) Library/Michigan/Chap5Sec2/Q13.pg

Find area of the region under the curve $y=4 x^{3}-7$ and above the x-axis, for $4 \leq x \leq 7$.
area $=$ \qquad
Correct Answers:

- 2124

91. (1 point) setFinal1475/Calc1APEX_02_01_Deriv_defLimit_04.pg

Part 1: The derivative at a specific point

Use the definition of the derviative to compute the derivative of $f(x)=\frac{9}{x}$ at the specific point $x=2$. Evaluate the limit by using algebra to simplify the difference quotient (in first answer box) and then evaluating the limit (in the second answer box).
$f^{\prime}(2)=\lim _{h \rightarrow 0}\left(\frac{f(2+h)-f(2)}{h}\right)=\lim _{h \rightarrow 0}(\square)=-$.

Part 2: The derivative function

Use the definition of the derivative to compute the derivative of the function $f(x)=\frac{9}{x}$ at an arbitrary point x. Evaluate the limit by using algebra to simplify the difference quotient (in first answer box) and then evaluating the limit (in the second answer box).
$f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)=\lim _{h \rightarrow 0}(\square)=\square$.

Part 3: The tangent line

Now let's calculate the tangent line to the function $f(x)=\frac{9}{x}$ at $x=4$.
a. By using $f^{\prime}(x)$ from part 2 , the slope of the tangent line to f at $x=4$ is $f^{\prime}(4)=$ \qquad
b. The tangent line to f at $x=4$ passes through the point $(4, f(4))=$ \qquad on the graph of f. (Enter a point in the form $(2,3)$ including the parentheses.)
c. An equation for the tangent line to f at $x=4$ is $y=$

Correct Answers:

- $-9 /[2 *(2+h)]$
- $-1 * 9 /\left(2^{\wedge} 2\right)$
- $-9 /\left[x^{*}(x+h)\right]$
- -9/($\left.x^{\wedge} 2\right)$
- $-9 /\left(4^{\wedge} 2\right)$
- $(4,2.25)$
- 2.25+-0.5625*(x-4)

92. (1 point) setFinal1475/Calc1APEX_02_01_Deriv_defLimit_03.pg

Part 1: The derivative at a specific point

Use the definition of the derviative to compute the derivative of $f(x)=1-9 x^{2}$ at the specific point $x=2$. Evaluate the limit by using algebra to simplify the difference quotient (in first answer box) and then evaluating the limit (in the second answer box).
$f^{\prime}(2)=\lim _{h \rightarrow 0}\left(\frac{f(2+h)-f(2)}{h}\right)=\lim _{h \rightarrow 0}(-)=-$.

Part 2: The derivative function

Use the definition of the derivative to compute the derivative of the function $f(x)=1-9 x^{2}$ at an arbitrary point x. Evaluate the limit by using algebra to simplify the difference quotient (in first answer box) and then evaluating the limit (in the second answer box).
$f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)=\lim _{h \rightarrow 0}(\square)=\square$.

Part 3: The tangent line

Now let's calculate the tangent line to the function $f(x)=1-9 x^{2}$ at $x=4$.
a. By using $f^{\prime}(x)$ from part 2, the slope of the tangent line to f at $x=4$ is $f^{\prime}(4)=$ \qquad
b. The tangent line to f at $x=4$ passes through the point $(4, f(4))=$ \qquad on the graph of f. (Enter a point in the form $(2,3)$ including the parentheses.)
c. An equation for the tangent line to f at $x=4$ is $y=$

Correct Answers:

- $(-36)-9 * h$
- $-2 * 2 * 9$
- $(-18) * x-9 * h$
- $-2 * * * 9$
- $-2 * 4 * 9$
- $(4,-143)$
- $-143+-72^{\star}(x-4)$

93. (1 point) setFinal1475/Calc1APEX_02_01_Deriv_defLimit_02.pg

Part 1: Limit of a difference quotient
Suppose $f(x)=\frac{6}{x-2}$. Evaluate the limit by using algebra to simplify the difference quotient (in first answer box) and then evaluating the limit (in the second answer box).
$\lim _{h \rightarrow 0}\left(\frac{f(4+h)-f(4)}{h}\right)=\lim _{h \rightarrow 0}(\square)=$ \qquad
Part 2: Interpreting the limit of a difference quotient
The limit of the difference quotient, -1.5 , from Part 1 above is (select all that apply).

- A. the slope of the secant line to the graph of $y=f(x)$ at $x=4$.
- B. $f^{\prime}(4)$
- C. the average rate of change of f at $x=4$.
- D. $f(4)$.
- E. the instantaneous rate of change of f at $x=4$.
- F. the slope of the tangent line to the graph of $y=f(x)$ at $x=4$.

Correct Answers:

- $(-6) /[2 *(4+h-2)]$
- $-1 * 6 /\left[(4-2)^{\wedge} 2\right]$
- BEF

94. (1 point) setFinal1475/Calc1APEX_02_01_Deriv_defLimit_01.pg

Part 1: Limit of a difference quotient

Suppose $f(x)=3 x^{2}+8 x-4$. Evaluate the limit by using algebra to simplify the difference quotient (in first answer box) and then evaluating the limit (in the second answer box).
$\lim _{h \rightarrow 0}\left(\frac{f(-2+h)-f(-2)}{h}\right)=\lim _{h \rightarrow 0}(-)=-$.

Part 2: Interpreting the limit of a difference quotient

The limit of the difference quotient, -4 , from Part 1 above is (select all that apply).

- A. $f^{\prime}(-2)$
- B. $f(-2)$.
- C. the slope of the tangent line to the graph of $y=f(x)$ at $x=-2$.
- D. the average rate of change of f at $x=-2$.
- E. the instantaneous rate of change of f at $x=-2$.
- F. the slope of the secant line to the graph of $y=f(x)$ at $x=-2$.
Correct Answers:
- $(-12)+3 * h+8$
- $2 * 3 *-2+8$
- ACE

