Problem 1.

1. ($\mathbf{1 0}$ points) Library/Union/setDervOptimization/4-5-23.pg

Find the absolute maximum and absolute minimum values of the function

$$
f(x)=x^{3}+12 x^{2}-27 x+11
$$

over each of the indicated intervals.
(a) Interval $=[-10,0]$.

1. Absolute maximum $=$ \qquad
2. Absolute minimum $=\square$
(b) Interval $=[-7,2]$.
3. Absolute maximum $=\square$
4. Absolute minimum $=\square$
(c) Interval $=[-10,2]$.
5. Absolute maximum =
6. Absolute minimum $=\square$

Correct Answers:

- 497
- 11
- 445
- -3
- 497
- -3

Problem 2.

2. (10 points) Library/UVA-Stew5e/setUVA-Stew5e-C03S11-LinAppr
ox/3-11-22.pg
Let $y=e^{x / 4}$.
Find the differential $d y$ when $x=4$ and $d x=0.5$ \qquad
Find the differential $d y$ when $x=4$ and $d x=0.02$ \qquad
Correct Answers:

- 0.339785228557381
- 0.0135914091422952

Problem 3.

3. (10 points) Library/Hope/Calc1/03-11-Differentials/Differen tials-04/Differentials-04.pg

The figure shows how a function $f(x)$ and its linear approximation (i.e., its tangent line) change value when x changes from x_{0} to $x_{0}+d x$.

Suppose $f(x)=x^{2}+4 x, x_{0}=3$ and $d x=0.01$. Your answers below need to be very precise, so use many decimal places.
(a) Find the change $\Delta f=f\left(x_{0}+d x\right)-f\left(x_{0}\right)$.
$\Delta f=$ \qquad
(b) Find the estimate (i.e., the differential) $d f=$ $f^{\prime}\left(x_{0}\right) d x$.
$d f=$ \qquad
(c) Find the approximation error $|\Delta f-d f|$.

Error $=$ \qquad

(Click on graph to enlarge)
Correct Answers:

- 0.1001
- 0.1
- 0.0001

Problem 4.

4. (10 points) Library/UVA-Stew5e/setUVA-Stew5e-C04S02-MeanVal

Thm/4-2-13a.pg
Consider the function $f(x)=\frac{1}{x}$ on the interval $[4,7]$.
(A) Find the average or mean slope of the function on this interval.

Average Slope = \qquad
(B) By the Mean Value Theorem, we know there exists a c in the open interval $(4,7)$ such that $f^{\prime}(c)$ is equal to this mean slope. Find all values of c that work and list them (separated by commas) in the box below.

List of values: \qquad
Correct Answers:

- -0.0357142857142857
- 5.29150262212918

Problem 5.

5. (5 points) Library/UCSB/Stewart5_4_4/Stewart5_4_4_10.pg

Find the limit. Use l'Hospital's Rule if appropriate. Use INF to represent positive infinity, NINF for negative infinity, and D for the limit does not exist.
$\lim _{x \rightarrow 0} \frac{x+\tan x}{-10 \sin x}=$
Correct Answers:

- -0.2

Problem 6.

6. (5 points) Library/WHFreeman/Rogawski_Calculus_Early_Transc endentals_Second_Edition/4_Applications_of_the_Derivative/4.5_ LHopitals_Rule/4.5.22.pg

Use L'Hôpital's Rule (possibly more than once) to evaluate the following limit
$\lim _{x \rightarrow \infty}\left(\frac{14 x^{3}+5 x^{2}}{12 x^{3}-11}\right)=$ \qquad
If the answer equals ∞ or $-\infty$, write INF or -INF in the blank.
Correct Answers:

- 1.16666666666667

Problem 7.

7. (10 points) Library/ASU-topics/setImplicitDerivatives/5-5-1 4.pg

The radius of a spherical balloon is increasing at a rate of 2 centimeters per minute. How fast is the surface area changing when the radius is 12 centimeters?
Hint: The surface area is $S=4 \pi r^{2}$.

Rate of change of surface area $=$ \qquad

Correct Answers:

- 603.18578948928

Problem 8.

8. (20 points) Library/ASU-topics/setSecondDerivative/4-4-72.p g

Suppose that

$$
f(x)=\frac{2 x^{2}}{x^{2}+25}
$$

(A) List all the critical values of $f(x)$. Note: If there are no critical values, enter 'NONE'.
(B) Use interval notation to indicate where $f(x)$ is increasing.
Note: Use 'INF' for ∞, '-INF' for $-\infty$, and use 'U' for the union symbol. If there is no interval, enter 'NONE'. Increasing:
(C) Use interval notation to indicate where $f(x)$ is decreasing.
Decreasing:
(D) List the x values of all local maxima of $f(x)$. If there are no local maxima, enter 'NONE'.
x values of local maximums $=$ \qquad
(E) List the x values of all local minima of $f(x)$. If there are no local minima, enter 'NONE'.
x values of local minimums $=$ \qquad
(F) Use interval notation to indicate where $f(x)$ is concave up.
Concave up:
(G) Use interval notation to indicate where $f(x)$ is concave down.
Concave down:
(H) List the x values of all the inflection points of f. If there are no inflection points, enter 'NONE'.
x values of inflection points $=$ \qquad
(I) Find all horizontal asymptotes of f, and list the y values below. If there are no horizontal asymptotes, enter 'NONE' y values of horizontal asymptotes $=$ \qquad
(J) Find all vertical asymptotes of f, and list the x values below. If there are no vertical asymptotes, enter 'NONE'
x values of vertical asymptotes $=$ \qquad
(K) Use all of the preceding information to sketch a graph of f. When you're finished, enter a " 1 " in the box below.
Graph complete: \qquad
Correct Answers:

- 0
- (0,infinity)
- (-infinity,0)
- none
- 0
- (-2.88675134594813,2.88675134594813)
- (-infinity,-2.88675134594813) U (2.88675134594813,infinity
- $-2.88675134594813,2.88675134594813$
- 2
- none
- 1

Problem 9.

9. (20 points) Library/ASU-topics/setSecondDerivative/4-4-50.p 9

Suppose that $f(x)=x^{4}-3 x^{3}$.
(A) List all the critical values of $f(x)$. Note: If there are no critical values, enter 'NONE'.
(B) Use interval notation to indicate where $f(x)$ is increasing.
Note: Use 'INF' for ∞, '-INF' for $-\infty$, and use 'U' for the union symbol.
Increasing:
(C) Use interval notation to indicate where $f(x)$ is decreasing.
Decreasing:
(D) List the x values of all local maxima of $f(x)$. If there are no local maxima, enter 'NONE'.
x values of local maximums $=$
(E) List the x values of all local minima of $f(x)$. If there are no local minima, enter 'NONE'.
x values of local minimums $=$ \qquad
(F) Use interval notation to indicate where $f(x)$ is concave up.
Concave up:
(G) Use interval notation to indicate where $f(x)$ is concave down.
Concave down:
(H) List the x values of all the inflection points of f. If there are no inflection points, enter 'NONE'.
x values of inflection points $=$ \qquad
(I) Use all of the preceding information to sketch a graph of f. When you're finished, enter a " 1 " in the box below.

Correct Answers:

- 0, 2.25
- (2.25,infinity)
- (-infinity,2.25)
- none
- 2.25
- (-infinity,0) U (1.5,infinity)
- $(0,1.5)$
- $0,1.5$
- 1

