Relationship between the limit and one-sided limits $\lim_{x \to a} f(x) = L \implies \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \qquad \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \implies \lim_{x \to a} f(x) = L$ $\lim_{x \to a^+} f(x) \neq \lim_{x \to a^-} f(x) \implies \lim_{x \to a} f(x) \text{ Does Not Exist}$

Properties

Assume $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist and c is any number then,

1.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

2.
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

4.
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)}\right] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$

6.
$$\lim_{x \to a} \left[\sqrt[n]{f(x)}\right] = \sqrt[n]{\lim_{x \to a} f(x)}$$

L'Hospital's Rule Derivatives If $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ or $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\pm \infty}{\pm \infty}$ then, **Definition and Notation** If $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ or $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{1}{\pm \infty}$ then, $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = \frac{1}{\pm \infty}$ then, $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac$

Function	Rule to Use	Derivative
y = c (constant)	The derivative of a constant is zero	y' = 0
$y = x^n$	Power Rule	$y' = nx^{n-1}$
y = f(x)g(x)	Product Rule	y' = f'(x)g(x) + f(x)g'(x)
$y = \frac{f(x)}{g(x)}$	Quotient Rule	y' = $\frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$
$y = (f(x))^n$	Chain Rule	$y' = n(f(x))^{n-1}(f'(x))$
y = sin u	Trig Derivative	y' = u' cos u
y = cos u	и и	y' = – u' sin u
y = tan u	u u	$y' = u' \sec^2 u$
y = cot u	u u	$y' = -u' \csc^2 u$
y = sec u	и и	y' = u' sec u tan u
y = csc u	и и	y' = – u' csc u cot u
y = ln u	Natural Log Rule	$y' = \frac{u'}{u}$
y = e ^u	Exponential Rule	y' = u' e ^u
$y = a^u$ (a is a constant)	Exponential Rule	$y' = a^u u' \ln(a)$

$y = \arcsin u / y = \sin^{-1} u$	Inverse Trig Func Rule	$\mathbf{y'} = \frac{u'}{\sqrt{1 - u^2}}$
y = arccos u / y = cos ⁻¹ u	Inverse Trig Func Rule	$\mathbf{y'} = -\frac{u'}{\sqrt{1-u^2}}$
$y = \arctan u / y = \tan^{-1} u$	Inverse Trig Func Rule	$y' = \frac{u'}{\sqrt{1+u^2}}$

***Note: "u" = "f(x)" instead of u being a single variable, it is considered a function.

Implicit Differentiation

Find y' if $e^{2x-9y} + x^3y^2 = \sin(y) + 11x$. Remember y = y(x) here, so products/quotients of x and y will use the product/quotient rule and derivatives of y will use the chain rule. The "trick" is to differentiate as normal and every time you differentiate a y you tack on a y' (from the chain rule). After differentiating solve for y'.

Additional Things to Remember:

SOH CAH TOA
$$\frac{\sin x}{\cos x} = tanx$$
 $\frac{\cos x}{\sin x} = \cot x$ $cscx = \frac{1}{\sin x}$ $sec x = \frac{1}{\cos x}$

