1. Evaluate the given limits
(a). $\lim _{x \rightarrow \frac{\pi}{2}} \sin x \cos x$
(b). $\lim _{x \rightarrow 0} \ln (1+x)$
(c). $\lim _{x \rightarrow 0}\left(e^{2 x}+1\right)$
(d). $\lim _{x \rightarrow 0} \frac{x^{2}+2 x}{x^{2}-2 x}$
(e). $\lim _{x \rightarrow 1} \frac{x^{2}-2 x+1}{2 x^{2}-x-1}$
(f). $\lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{h}$
(g). $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$
(h) $\lim _{x \rightarrow 1} \frac{\frac{1}{x}-1}{x-1}$
2. Evaluate the limits of the piecewise defined functions and answer the question.

$$
g(x)= \begin{cases}2 x^{2}+5 x-1, & \text { if } x<0 \\ \sin x, & \text { if } x \geq 0\end{cases}
$$

(a). $\lim _{x \rightarrow 0^{-}} g(x)$
(b). $\lim _{x \rightarrow 0^{+}} g(x)$
(c). $\lim _{x \rightarrow 0} g(x)$
(d). $g(0)$.
(e). Is $g(x)$ continuous at $x=0$? If not, explain the type of the discontinuity.
3. Evaluate the limits of the piecewise defined functions and answer the question.

$$
f(x)= \begin{cases}x^{2}, & x<2 \\ x+1, & x=2 \\ -x^{2}+2 x+4, & x>2\end{cases}
$$

(a). $\lim _{x \rightarrow 2^{-}} f(x)$
(b). $\lim _{x \rightarrow 2^{+}} f(x)$
(c). $\lim _{x \rightarrow 2} f(x)$
(d). $f(2)$.
(e). Is $f(x)$ continuous at $x=2$? If not, explain the type of the discontinuity.
4. Let $f(x)=-3 x^{2}+2 x-1$
(a). Using the definition of the derivative to compute $f^{\prime}(x)$.
(b). Find the equation of the tangent line to the graph of f at $x=1$.
5. Use differential rules to find the derivative of the following functions.
(a). $f(x)=x^{7}+10$
(b). $f(x)=4 x^{2}-7 x$
(c). $f(x)=x^{4}+\frac{2}{x}$
(d). $f(x)=(x+2)\left(2 x^{2}-3\right)$
(e). $f(x)=\frac{x^{3}+2 x^{2}-4}{3}$
(f). $f(x)=\frac{x^{2}+4}{x^{2}-4}$

