Sample Exam 4

1. (a) Find the equation of the tangent line (linearization) to $f(x)=\frac{1}{\sqrt{x}}$ at $x=4$.
(b) Find the differential $d y$ of $f(x)=\frac{1}{\sqrt{x}}$ and evaluate it for $x=4$ and $d x=0.3$.
2. Approximate $\sqrt[3]{27.1}$ by linearization. Is your estimate an under or over estimate?
3. A closed cylindrical can is to hold 1 liter $\left(1000 \mathrm{~cm}^{3}\right)$ of liquid. How should we choose the height and radius to minimize the amount of material needed to manufacture the can?
4. A church window consisting of a rectangle topped by a semicircle is to have a perimeter p. Find the radius of the semicirce if the area of the window is to be maximum.
5. Assume that oil spilled from a ruptured tanker spreads in a circluar pattern whose radius increases at a constant rate of $2 \mathrm{ft} / \mathrm{s}$. How fast is the area of the spill increasing when the radius of the spill is $60 \mathrm{ft} / \mathrm{s}$?
6. Sand pouring from a chute forms a conical pile whose height is always equal to the diameter. If the height increases at a constant rate of $5 \mathrm{ft} / \mathrm{min}$, at what rate is sand pouring from the chute when the pile is 10 ft high?
7. Evaluate:
(a) $\int\left(3 x^{6}-2 x^{2}+7 x+1\right) d x$
(b) $\int\left(\frac{t^{2}-2 t^{4}}{t^{4}}\right) d t$
(c) $\int\left(\frac{7}{y^{3 / 4}}-\sqrt[3]{y}+4 \sqrt{y}\right) d y$
(d) $\int_{-1}^{2}(x+2) d x$
(e) $\int_{-2}^{2}\left(4 e^{x}+3\right) d x$
(f) $\int_{-\pi / 3}^{\pi / 3} \sin (x) d x$
8. A particle moves on a coordinate line so that its velocity at time t is $v(t)=t^{2}-2 t \mathrm{~m} / \mathrm{s}$.
(a) Find the displacement of particle during the time interval $0 \leq t \leq 3$.
(b) Find the distance traveled by them particle during the time interval $0 \leq t \leq 3$.
9. Find total area between the curve $y=1-x^{2}$ and the x-axis over the integral $[0,2]$.
