Net Change as the Integral of a Rate - Handout/Worksheet

1. Net Change as the Integral of a Rate: The net change in $s(t)$ over an interval [$\left.t_{1}, t_{2}\right]$ is given by the integral

$$
\int_{t_{1}}^{t_{2}} s^{\prime}(t) d t=s\left(t_{2}\right)-s\left(t_{1}\right)
$$

2. The Integral of Velocity For an object in linear motion with velocity $v(t)$, then

$$
\begin{gathered}
\text { Displacement during }\left[t_{1}, t_{2}\right]=\int_{t_{1}}^{t_{2}} v(t) d t \\
\text { Distance traveled during }\left[t_{1}, t_{2}\right]=\int_{t_{1}}^{t_{2}}|v(t)| d t
\end{gathered}
$$

3. A particle has velocity $v(t)=t^{3}-10 t^{2}+24 t \mathrm{~m} / \mathrm{s}$. Compute a) Displacement over $[0,6]$ and b) Total distance traveled over $[0,6]$.
