Antiderivatives and The Definite Integral - Handout/Worksheet

1. Definition: A function F is called an antiderivative of f on an interval I if $F^{\prime}(x)=$ $f(x)$ for all $x \in I$.
2. Theorem: If F is a antiderivative of f on an interval I, then the most general antiderivative of f on I is $F(x)+C$ where C is an arbitrary constant.
3. Find the most general antiderivative of each of the following functions.
(a) $f(x)=\cos (x)$
(b) $f(x)=x^{n}$ for $n \geq 0$
(c) $f(x)=x^{-4}$
(d) $f(x)=6 \sqrt{x}-\sqrt[6]{x}$
4. The process of finding antiderivatives is called antidifferentiation or integration. Thus, if

$$
\frac{d}{d x}[F(x)]=f(x)
$$

then integrating (or antidifferentiating) $f(x)$ produces the antiderivatives $F(x)+C$.
5. Since differentiation and integration are inverses

$$
\frac{d}{d x}\left[\int f(x) d x\right]=f(x)
$$

6. Alternatively, the integral $\int_{a}^{b} f(x) d x$ can be interpreted as the signed area of the region between the graph and x -axis over $[a, b]$
7. Theorem: If f and g are integrable over $[a, b]$,
(a) $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
(b) $\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
8. Draw a graph of the signed area represented by the integral and compute it using geometry.
(a) $\int_{0}^{5}(3-x) d x$
(b) $\int_{0}^{5} \sqrt{25-x^{2}} d x$
