Sample Exam 4 Solutions

NAME:

DATE:

1. Using linearization $f(x)$ is approximately 3.003704 whereas the actual value is 3.003699 . So the estimate is an overestimate.
2. (a) minimum of $f(x)=-\frac{9}{8}$ occurs at $x=\frac{1}{8}$, maximum of $f(x)=9$ occurs at $x=-1$
(b) minimum of $f(x)=-1$ occurs at $x=0$, maximum of $f(x)=27$ occurs at $x=4$
3. (a) increasing on the interval $\left(-\frac{3}{2},+\infty\right)$, decreasing on the interval $\left(-\infty,-\frac{3}{2}\right)$, local min at the point $\left(-\frac{3}{2},-\frac{43}{16}\right)$, inflection points at $(-1,-2)$ and $(0,-1)$, concave up on the intervals $(-\infty,-1)$ and $(0,+\infty)$ and concave down on the interval $(-1,0)$, -intercepts at $x=-2.1$ and $x=.72$ and no asymptotes

(b) decreasing for all $x \neq 2$, no local min or max, concave down on the interval $(-\infty, 2)$ and concave up on the interval $(2,+\infty)$, no inflection points, vertical asymptote at $x=2$, horizontal asymptote at $y=1$ and intercepts at $(-3,0)$ and $(0,-3 / 2)$

4. (a) $\frac{1}{2}$
(b) 0
(c) π, solution is correct, here is the clarification:

$$
\lim _{x \rightarrow \infty} x \cdot \sin \left(\frac{\pi}{x}\right)=\lim _{x \rightarrow \infty} \frac{\sin \left(\frac{\pi}{x}\right)}{\frac{1}{x}}
$$

which is an indeterminate form of type $\frac{0}{0}$. Apply L'Hopital one time only to get:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{-\pi x^{-2} \cos \left(\frac{\pi}{x}\right)}{-x^{-2}} \\
& =\lim _{x \rightarrow \infty} \pi \cos \left(\frac{\pi}{x}\right)=\pi
\end{aligned}
$$

(d) 0
(e) 0
(f) ∞
(g) $\frac{1}{3}$

