The Shape of a Graph - Handout/Worksheet

1. The Second Derivative Test Let c be a critical point of $f(x)$. If $f^{\prime \prime}(x)$ exists, then

- $f^{\prime \prime}(c)>0 \rightarrow f$ has a local minimum at c.
- $f^{\prime \prime}(c)<0 \rightarrow f$ has a local maximum at c.
- $f^{\prime \prime}(c)=0 \rightarrow$ inconclusive: $f(c)$ may be a local max, local min, or neither.

2. Definition: A point P on a curve $y=f(x)$ is called an inflection point if f is continuous there and the curve changes from concave up to concave down or vice versa.
3. Find the points of inflection and intervals of concavity of $f(x)=3 x^{5}-5 x^{4}+1$.
