Extreme Values and the Mean Value Theorem - Handout

1. Definition: A function f has an absolute (or global) maximum at c if $f(c) \geq f(x)$ for every x in its domain. $f(c)$ is called the maximum value of f on its domain. Similarly, f has an absolute (or global) minimum at c if $f(c) \leq f(x)$ for every x in its domain. $f(c)$ is called the minimum value of f on its domain.
2. The maximum and minimum are called the extreme values of f.
3. Definition: A function f has a local (or relative) maximum at c if $f(c) \geq f(x)$ for every x near c. In other words, $f(c) \geq x$ for every x in some open interval containing c. Similarly f has a local (or relative) minimum at c if $f(c) \leq f(x)$ for every x near c.
4. The Extreme Value Theorem: If f is continuous on a closed interval $[a, b]$, then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some numbers c and d in $[a, b]$.
5. Fermat's Theorem: If f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists then $f^{\prime}(c)=0$.
6. The Closed Interval Method: To find the absolute maximum and minimum values of a continuous function on a closed interval $[a, b]$
(a) Find the values of f at the critical numbers of f in (a, b).
(b) Find the values of f at the endpoints.
(c) The largest value from a . and b . is the absolute maximum. The smallest value from a . and b . is the absolute minimum.
7. The Mean Value Theorem: Let f be a function that satisfies the following
(a) f is continuous on $[a, b]$
(b) f is differentiable on (a, b)
the there is a number $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

in other words $f(b)-f(a)=f^{\prime}(c)(b-a)$.
8. Corollary If $f(x)$ is differentiable and $f^{\prime}(x)=0$ for all $x \in(a, b)$, then $f(x)$ is constant on (a, b). In other words, $f(x)=C$ for some constant C.
9. The Sign of the Derivative Let f be a differentiable function on an open interval (a, b)

- If $f^{\prime}(x)>0$ for $x \in(a, b)$, then f is increasing on (a, b).
- If $f^{\prime}(x)<0$ for $x \in(a, b)$, then f is decreasing on (a, b).

10. We say that $f(x)$ is monotonic on (a, b) if it is either increasing or decreasing on (a, b).
11. First Derivative Test for Critical Points Assume that $f(x)$ is differentiable and let c be a critical point of $f(x)$. Then

- $f^{\prime}(x)$ changes from + to - at $c \rightarrow f(c)$ is a local maximum.
- $f^{\prime}(x)$ changes from - to + at $c \rightarrow f(c)$ is a local minimum.

