## Sample Exam \#2

 MAT 1475 Fall 20191. Find the equation of the tangent line to the curve $f(x)=\frac{1-x}{1+x}$ at $x=2$. Use the slopeintercept form.
2. Find the derivative of $f(x)=x^{2}-3 x+5$ using the definition of the derivative.
3. A spherical balloon is being inflated. Find the rate of change of the volume $V$ of the balloon with respect to its radius $r$. Hint: Recall that for a sphere $V=\frac{4}{3} \pi r^{3}$.
4. Differentiate the given functions
(a) $f(t)=3 t^{4}-\frac{5}{2} t^{5}+6 t$
(b) $h(x)=\frac{\sin (x)}{1+\cos (x)}$
(c) $f(x)=\sec (x)-\sqrt{2} \tan (x)$
(d) $g(s)=\left(s^{5}+2 s\right)^{2}$
(e) $y=-3 x^{-8}+2 \sqrt{x}$
(f) Find $h^{\prime \prime}(t)$ if $h(t)=\frac{3 t-2}{5 t}$
5. Find the points on the curve where the tangent is horizontal to $y=\frac{1}{3} x^{3}-4 x+15$.
6. Find the equation of the tangent to the curve $y^{2} e^{x^{2}-16}-x y^{-1}=2$ at $(4,2)$.
7. Use logarithmic differentiation for find $\frac{d y}{d x}$ when $y=\frac{x(x+1)^{3}}{(3 x-1)^{2}}$.
8. Use logarithmic differentiation for find $\frac{d y}{d x}$ when $y=x^{\cos x}$.
9. Differentiate
(a) $y=\frac{1}{\left(x^{2}+1\right)^{4}}$
(b) $y=\ln \left(\frac{1}{x^{2}}\right)$
(c) $y=3^{x} \sec x$
(d) $y=16^{\sin (x)}$
(e) $y=\ln (\cot (x))$
(f) $y=\sin (6 x) \cos (2 x)$
(g) $y=\frac{3 x^{2}-5}{2-x^{3}}$
(h) $y=\sin ^{-1}(3 x)$
