Derivatives

1. Definition: The the derivative of a function f at a number a denoted by $f^{\prime}(a)$ is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

if this limit exists, or equivalently, if we let $x=a+h$, then $h=x-a$ and $h \rightarrow 0$ only if $x \rightarrow a$ and

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

2. There are two interpretations of the derivative:
(a) The tangent line to $y=f(x)$ at $(a, f(a))$ is the line through $(a, f(a))$ whose slope is equal to $f^{\prime}(a)$, the derivative of f at a. If we use the point-slope form of the equation of a line:

$$
y-f(a)=f^{\prime}(a)(x-a)
$$

(b) The derivative $f^{\prime}(a)$ is the instantaneous rate of change of $y=f(x)$ with respect to x when $x=a$.
3. If we replace a by a variable x, we obtain

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

So given any number x for which this limit exists, we assign to x the number $f^{\prime}(x)$. We can regard f^{\prime} as a new function called the derivative of \boldsymbol{f}.
4. The domain of $f^{\prime}=\left\{x \mid f^{\prime}(x)\right.$ exists $\}$ and may be smaller than the domain of f.
5. A function f is differentiable at a if $f^{\prime}(a)$ exists. It is differentiable on an open interval (a, b) if it is differentiable at every number in the interval.
6. Theorem: If f is differentiable at a, then f is continuous at a. WARNING: The converse is not true!

Differentiation Formulas

1. The derivative of a constant function

$$
\frac{d(c)}{d x}=0
$$

2. Power Rule: If n is a positive integer, then

$$
\frac{d x^{n}}{d x}=n x^{n-1}
$$

3. Constant Multiple Rule: If c is a constant and f is a differentiable function, then

$$
\frac{d}{d x}[c f(x)]=c \frac{d}{d x} f(x)
$$

4. Sum Rule: If f and g are both differentiable, then

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

5. Difference Rule: If f and g are both differentiable, then

$$
\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)
$$

6. Product Rule: If f and g are both differentiable, then

$$
\frac{d}{d x}[f(x) g(x)]=f(x) \frac{d}{d x}[g(x)]+g(x) \frac{d}{d x}[f(x)]
$$

7. Quotient Rule: If f and g are both differentiable, then

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \frac{d}{d x}[f(x)]-f(x) \frac{d}{d x}[g(x)]}{[g(x)]^{2}}
$$

