Continuity

1. A function f is said to be continuous at a point c if the following three conditions are satisfied:

- $f(c)$ is defined
- $\lim _{x \rightarrow c} f(x)$ exists
- $\lim _{x \rightarrow c} f(x)=f(c)$.

2. If one or more of the conditions in this definition fails, we say that f has a discontinuity at the point c, or that f is discontinuous at c.
3. Geometrically, think of a continuous function at every value in an interval as a function whose graph has no break in it. The graph can be drawn without removing your pen from the paper.
4. A function f is said to be continuous from the right at c if

$$
\lim _{x \rightarrow c^{+}} f(x)=f(c)
$$

and continuous from the left at c if

$$
\lim _{x \rightarrow c^{-}} f(x)=f(c) .
$$

5. If f is continuous at each point of an interval we say that \mathbf{f} is continuous on the interval. (We understand continuous at the endpoints to mean continuous from the left (or right)).
6. If f and g are continuous at c and k is a constant then, the following functions are also continuous at c :

- $f+g$
- $f-g$
- $k f$
- $f g$
- $\frac{f}{g}$ if $g(c) \neq 0$.

7. Theorem: a) Any polynomial is continuous everywhere, that is, it is continuous on the set of all real numbers \mathbf{R}. b) Any rational function is continuous wherever it is defined; that is, it is continuous on its domain. c) root functions and trigonometric functions are also continuous at every value in their domains.
8. If f is continuous on an interval and if f^{-1} exists, then f^{-1} is continuous.
9. If g is continuous at c and f is continuous at $g(c)$ then the composition $f \circ g$ is continuous at c.
