Limits

1. Definition: Assume that $f(x)$ is defined for all x in a open interval containing c, but not necessarily at c itself. We say that
the limit of $f(x)$ as approaches c is equal to L
if $|f(x)-L|$ becomes arbitrarily small when x is any number sufficiently close to (but not equal) to c. In this case we write,

$$
\lim _{x \rightarrow c} f(x)=L
$$

We also say that $f(x)$ approaches or converges to L as $x \rightarrow c$ (and we write $f(x) \rightarrow L$.
2. If the values of $f(x)$ do not converge to any limit as $x \rightarrow c$, we say that $\lim _{x \rightarrow c} f(x)$ does not exist.
3. NOTICE: We never consider $x=c$. In fact, $f(x)$ may not even be defined at $x=c$.
4. One-sided Limits We write

$$
\lim _{x \rightarrow c^{-}} f(x)=L
$$

and say the left hand limit of $f(x)$ as x approaches c (or the limit of $f(x)$ as x approaches c from the left). Similarly

$$
\lim _{x \rightarrow c^{+}} f(x)=L
$$

is the right hand limit of $f(x)$ as x approaches c is equal to l.
5. We observe the following:

$$
\lim _{x \rightarrow c} f(x)=L \quad \Leftrightarrow \quad \lim _{x \rightarrow c^{-}} f(x)=L=\lim _{x \rightarrow c^{+}} f(x)=L .
$$

6. Infinite Limits Some functions $f(x)$ tend to $+\infty$ or $-\infty$ as x approaches a value c. If so, $\lim _{x \rightarrow c}$ does not exist, but we say that $f(x)$ has an infinite limit and we write

$$
\lim _{x \rightarrow c} f(x)=+\infty
$$

or

$$
\lim _{x \rightarrow c} f(x)=-\infty .
$$

7. When $f(x)$ approaches $+\infty$ or $-\infty$ as x approaches c from one or both sides the line $x=c$ is called a vertical asymptote.
