General Biology 1
 BIO1101

Syllabus \& Textbook:
Lecturer: Email:

Michael Gotesman, PhD

mgotesman@citytech.cuny.edu

Letter Grade	Numerical Ranges
A	$93-100$
A-	$90-92.9$
B+	$87-89.9$
B	$83-86.9$
B-	$80-82.9$
C+	$77-79.9$
C	$70-76.9$
D	$60-69.9$
F	59.9 and below

OER

Lecture:
Lab:

Grade Breakdown:

Exams (4): 20\% Each
Quizzes: 20\% Average

Recap: Lecture 23

1. DNA Compaction/Condensation:

Human genome spans 2 meters, fits into nucleus (5-8 $\mu \mathrm{m}$ diameter) Active genes 500X compacted, Inactive mitotic DNA (10,000X)
2. Histone Core Complex: Octomer 8 Proteins (2- H2A, H2B, H3, H4)

DNA double helix - 2 nm
Nucleosome "Beads on a string" - 11 nm (~200 bp)
147 bp (1.65 turns) around histone core -6 X compaction
Chromatin fiber - $30 \mathrm{~nm}(\mathrm{H} 1)-40 \mathrm{X}$ compaction Loops (300 nm) - 500X compaction
Chromatid 700 nm - 10,000 X compaction

3. Chromosome Organization:

A. Chromosome vs chromatid
B. p arm, q arm, centromere
C.Ori (replication), Telomeres (stabilization) TTAGGG
D. Heterochromatin/Euchromatin

4. Epigenetics

1. Histone Code (M, A, P) - H3
2. X-chromosome inactivation (Barr bodies)

Bio 1101- Lecture 24

 \title{GENETICS
}
 \title{
GENETICS
}

Gregor Mendel

- The "father" of modern Genetics (1850s and 1860s)
- Austrian monk
- Studied science and mathematics at University of Vienna
- Conducted breeding experiments with the garden pea Pisum sativum
- Carefully gathered and documented mathematical data from his experiments
- Formulated fundamental laws of heredity in early 1860s
- Had no knowledge of cells or chromosomes
- Did not have a microscope

Blending Inheritance

- Theories of inheritance in Mendel's time:
- Based on blending characteristics
- Parents of contrasting appearance produce offsprings of intermediate appearance
- Mendel's findings were in contrast with this
- He formulated the particulate theory of inheritance
- Inheritance involves reshuffling of genes from generation to generation

Mendel's experimental procedure

Studied "heredity" by breeding pea plants Studied seven (7) traits and measured how they were passed on, generation by generation He envisioned "units" of inheritance, now known as genes.
Character - a "heritable" feature that varies among individuals.

- e.g. flower color, height

Trait - each variant of a character (e.g. purple flowers, tall plants)
True-breeding (homozygous) - plants that self-pollinate have NO variation for a particular trait

One-Trait Inheritance

- Mendel performed cross-breeding experiments
- Used "true-breeding" (homozygous) plants
- Chose varieties that differed in only one trait (monohybrid cross)
- Performed reciprocal crosses
- Parental generation = P
- First filial generation offspring $=F_{1}$
- Second filial generation offspring $=F_{2}$
- Formulated the Law of Segregation
- How genes are passed during mating

Mendel's Monohybrid Crosses: An Example

Mendel's

An Example

Punnet Square:
1: XX- Female XY- Male

2: Pp X Pp

P - Purple (dominant)
F_{1} Generation (hybrids)

White flowers

All plants had purple flowers
F_{2} Generation

True-Breeding Parental (P)

F_{1} Generation

F_{2} Generation

Garden Pea Traits Studied by Mendel

*All of these produce approximately a 3:1 ratio. For example, $\frac{787}{277}=\frac{3}{1}$.
b.

Table 14. 1 The Results of Mendel's F_{1} Crosses for Seven Characters in Pea Plants

Law of Segregation

- So Mendel guessed that individuals actually carry TWO traits for each character, one from each parent
- But for each character, one trait is dominant to the other, so that if you have BOTH, only the dominant one is expressed. The "masked" trait is called recessive. In modern language...
- For every GENE, an individual has two ALLELES (one from each parent)
- If you have two of the SAME alleles, this would be truebreeding. Now called homozygous (PP).
- If you have two DIFFERENT alleles, called heterozygous (Pp), only the dominant one is expressed.

Modern Genetics View

Each trait in a pea plant is controlled by two alleles (alternate forms of a gene)

Dominant allele (capital letter - P) masks the expression of the recessive allele (lower-case - p)

Alleles occur on a homologous pair of chromosomes at a particular gene locus

- Homozygous = identical alleles (PP)
- Heterozygous = different alleles (Pp)

Homologous Chromosomes

Genotype Versus Phenotype

Genotype (what are the genes)

- Refers to the two alleles an individual has for a specific trait
- If identical, genotype is homozygous (PP) or (pp)
- If different, genotype is heterozygous (Pp)

Phenotype (what you see)

- Refers to the physical appearance of the individual

ㅍ (PP) or (Pp) Purple VS (pp) - white

Punnett Square

Table listing all possible

 genotypes resulting from a cross- All possible sperm genotypes are lined up on one side

Monohybrid Testcross [Blue vs Green]

Individuals with recessive phenotype always have the homozygous recessive genotype (bb)

- However, Individuals with dominant phenotype have indeterminate genotype
- May be homozygous dominant (GG) , or
- Heterozygous (Gg)

Test cross determines genotype of individual having dominant phenotype (GG) or (Gg)

- You simply cross the individual to a pure-breeding (homozygous) recessive (bb)
- If all offspring are the dominant phenotype (GG) or (Gg), then the unknown must have been homozygous
- If they are $1 / 2$ dominant (Gg), $1 / 2$ recessive (bb), it was
${ }^{19}$ heterozygous.

Dominant phenotype, unknown genotype:

PP or Pp?

Recessive phenotype, known genotype:
pp

If $P P$, then all offspring purple:

Two-Trait Inheritance

Dihybrid cross uses true-breeding plants differing in two traits (TtGg)

- Observed phenotypes among F_{2} plants
- Formulated Law of Independent Assortment
- During gamete formation, each pair of alleles will segregate INDEPENDENTLY of all other alleles
- All possible combinations of alleles can occur in the gametes

Two-Trait Test

 CrossMale
Parents Female

Homozygous II - gg

Incomplete Dominance --

 Blending Inheritance- Heterozygote has phenotype intermediate between that of either homozygote
- Homozygous red has red phenotype
- Homozygous white has white phenotype
- Heterozygote has pink (intermediate) phenotype
- Phenotype reveals genotype without test cross

Polygenic Inheritance

- Occurs when a trait is governed by two or more genes having different alleles
- Each dominant allele has a quantitative effect on the phenotype
- These effects are additive
- Result in continuous variation of phenotypes

Nature vs. Nurture

- Environment can influence the expression of genes, so phenotype is not always strictly dependent on genotype
- E.g., identical twins have the same genes, but are NOT perfectly identical Any Ideas How?
- Genes often establish a norm of reaction, which is a range of possible phenotypes for a given genotype.
- So "nature" and "nurture" cooperate to establish phenotypes

Human Genetic Disorders

- Autosome - Any chromosome other than a sex chromosome
- Genetic disorders caused by genes on autosomes are called autosomal disorders
- Some genetic disorders are autosomal dominant
- An individual with AA has the disorder
- An individual with Aa has the disorder
- An individual with aa does NOT have disorder
- Other genetic disorders are autosomal recessive
- An individual with AA does NOT have disorder
- An individual with Aa does NOT have disorder, but is a carrier
- An individual with aa DOES have the disorder

Autosomal Recessive Pedigree Chart

Autosomal Dominant Pedigree Chart

Probability

- Assortment of alleles into gametes is random
- Fertilization (which gametes) is random
- Probability = number of ways a certain event could occur divided by the total number of possible outcomes
- If probability $=1$, the event is CERTAIN to happen
- If probability $=0$, the event CANNOT happen
- Everything in between is a fraction (or percent)
- Example = flipping a coin: prob. of heads $=1 / 2$, prob. of tails
$=1 / 2$
- The probability of all outcomes adds up to 1

Segregation of alleles into eggs

Segregation of alleles into sperm

Rules for Calculating Probability

So you don't have to use a Punnett square every time...
Rule of addition - If an outcome can occur two different ways, the two probabilities are ADDED to get the final probability Usually involves an "OR" statement

Rule of Multiplication - The overall probability of two independent events occurring together equals the PRODUCT (multiplication) of their individual probabilities

Usually involves an "AND" statement

Terminology

Pleiotropy

- A gene that affects more than one characteristic of an individual (multiple phenotypic effects)
- Sickle-cell (incomplete dominance)
- Codominance
- More than one allele is fully expressed
- ABO blood type (multiple allelic traits)
- Epistasis
- A gene at one locus interferes with the expression of a gene at a different locus
- Human skin color (polygenic inheritance)

Autosomal Recessive Disorders

- Tay-Sachs Disease
- Progressive deterioration of psychomotor functions
- Cystic Fibrosis
- Mucus in bronchial tubes and pancreatic ducts is particularly thick and viscous
- Phenylketonuria (PKU)
- Lack enzyme for normal metabolism of phenylalanine

Autosomal Dominant Disorders

- Neurofibromatosis
- Tan or dark spots develop on skin and darken
- Small, benign tumors may arise from fibrous nerve coverings
- Huntington Disease
- Neurological disorder
- Progressive degeneration of brain cells
- Severe muscle spasms
- Personality disorders

2. Mendelian Genetics: Breeding

https://openlab.citytech.cuny.edu/bio1-oer/genetics/6/

1. The Punnett square is a diagram that is used to predict an outcome of a particular cross or breeding experiment.
2. It is named after Reginald C. Punnett, who devised the approach.
3. The diagram is used by biologists to determine the probability of an offspring having a particular genotype.
4. Homozygous (RR) or (rr)
5. Heterozygous (Rr)

Punnett Square: OneTrait Cross

Dominant (G) versus Recessive (g) genes

Q4: What is a dominant gene? ${ }^{(1)}$ Q5: What is a recessive gene? Q6: In this example, what are the dominant/recessive genes?

True-Breeding
 Parental (P)

F_{1} Generation

F_{2} Generation

Punnett Square: The Two Trait Cross (Dihybrid Cross)

Probability Practice:

Consider this cross: $\operatorname{Rr} \times \operatorname{Rr}$
Think about the gametes that each could produce and assign a fraction to each

Fertilization occurs. What percentage would be...
RR ? Rr? rr?
What fraction would be the dominant phenotype?
Consider this cross: Tt x tt
What fraction would be tt?
What fraction would be the recessive phenotype?
Consider this cross: GgEe x GgEE
What fraction would be ggEE?
What fraction would be GgEe?
What fraction would be ggee?

