General Biology 1 BIO1101 Syllabus & Textbook: <u>http://goo.gl/rvgdrH</u>

Lecturer: Michael Gotesman, PhD Email: mgotesman@citytech.cuny.edu

Letter Grade	Numerical
	Ranges
Α	93-100
A-	90-92.9
B+	87-89.9
В	83-86.9
B-	80-82.9
C+	77-79.9
С	70-76.9
D	60-69.9
F	59.9 and below

<u>OER</u>

Lecture:<u>https://openlab.citytech.cuny.edu/bio-oer/page/2/</u> Lab: <u>https://openlab.citytech.cuny.edu/bio-oer/</u>

Grade Breakdown:

Exams (4): 20% Each Quizzes: 20% Average Bio 1101- Lecture 18-19 Fall 2017

Photosynthesis

Review of Energy Flow

- E comes to earth from the sun:
- Solar E converted to chemical E by photosynthesis (chloroplasts)
 – Glucose
- Cells harvest Chemical E by Respiration (mitochondria)
 – ATP
- The E of ATP powers cellular "work"
 - Most E is actually lost as heat along the way!

Modes of Nutrition

Trough \rightarrow

- <u>Heterotroph</u> "other feeder" Acquires organic molecules from other organisms.
- <u>Autotroph</u> "self feeder." Makes their own organic molecules -- (atrophy).
- <u>Photoautotroph</u> employs photosynthesis to fix E from the sun into organic molecules (from CO_2 and H_2O)
 - These supply all the world with organic molecules and energy!

Photosynthetic Organisms

- All life on Earth depends on a star 93 million miles away (~8 light-minutes in distance)
- Provides photosynthesizers with solar energy
- Photosynthesis:
 - A process that captures solar energy
 - Transforms solar energy into chemical energy
 - Energy ends up stored in a carbohydrate
- Photosynthesizers produce all food energy
 - Only 42% of sun's energy directed towards Earth reaches surface
 - Of this, only 2% is captured by photosynthesizers
 - Of this, only a tiny portion results in biomass

(a) Plants

(b) Multicellular algae

(d) Cyanobacteria

Photosynthesis

- Photosynthesis takes place in the green portions of plants
 - Leaf of flowering plant contains mesophyll tissue
 - Cells containing chloroplasts
 - Specialized to carry on photosynthesis
- CO₂ enters leaf through stoma/stomata
 Diffuses into chloroplasts in mesophyll cells
 - In stroma, CO_2 combined with H_2O to form $C_6H_{12}O_6$ (sugar)
 - Energy supplied by light

Leaves and Photosynthesis

Chloroplasts – site of photosynthesis

- Green parts of plants have chloroplasts (leaves are main site)
 - <u>Mesophyll</u> tissue layer inside a leaf with high concentration of chloroplasts
 - Chlorophyll green pigment that absorbs light
- <u>Stomata</u> pores in the leaf where CO₂ enters and O₂ exits
- <u>Veins</u> bring H_2O to the leaf from roots
- <u>Stroma</u> central interior of chloroplasts (inside both membranes)
- <u>Thylakoids</u> membrane sacs inside stroma that contain chlorophyll

Leaves and Photosynthesis

Photosynthetic Pigments

- Pigments:
 - Chemicals that absorb some colors in rainbow more than others
 - Colors least absorbed reflected/transmitted most
- Absorption Spectra
 - Graph showing relative absorption of the various colors of the rainbow
 - Chlorophyll is green because it absorbs much of the reds and blues of white light

Shorter Wavelength → More energy, Longer Wavelength → Less Energy Chlorophyll is green because it absorbs much of the reds and blues of white light

Photosynthetic Pigments

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a. The absorption spectrums for chlorophylls a and b and the carotenoids.

b. The action spectrum for photosynthesis.

Overview of Photosynthesis

- It is the exact reverse of Respiration <u>Solar energy +</u> $6 \text{ CO}_2 + 6 \text{ H}_2\text{O} \square \text{ C}_6\text{H}_{12}\text{O}_6 + \text{O}_2$
 - $\Delta G = +686 \text{ kcal/mol}$
 - ENDERGONIC, so E is required
- It is also a series of redox reactions, except:
 - Carbon is REDUCED
 - Water is SPLIT (oxidized) to oxygen and electrons (H⁻)
- The E-'s are taken from H₂O (as H⁻)
 - Begin as low-E
 - get "energized" by sunlight, becoming high-energy
 - Eventually passed to CO_2 (as H⁻) to form glucose

Two phases of Photosynthesis

<u>Light Reactions</u>

- Occur in Thylakoid Membranes
- Chlorophyll aborbs solar energy

- Low-E e⁻'s from H₂O are "excited" and passed to NADP+ to form NADPH
- Some ATP is formed (electron transport chain, pumping of H+). This is called <u>Photo-phosphorylation</u>
- $-O_2$ is released
- **<u>Calvin Cycle</u>** (aka "dark reactions")
 - Occurs in the Stroma
 - **<u>Carbon Fixation</u>** CO₂ is reduced to a carbohydrate
 - Carbon is reduced by addition of the high-E e-'s from NADPH
 - This costs some ATP.

Photosynthesis Overview

Light Reactions

What gives the e's to the ETC?

What does the ETC pump and where?

A rotor within the membrane spins clockwise when H⁺ flows past it down the H⁺ gradient.

A stator anchored in the membrane holds the knob stationary.

A rod (or "stalk") extending into the knob also spins, activating catalytic sites in the knob.

Three catalytic sites in the stationary knob join inorganic phosphate to ADP to make ATP.

Photosynthetic Reactions: The Light Reactions

- Light reactions consist of two alternate electron pathways:
 - Noncyclic electron pathway
 - Cyclic electron pathway
- Capture light energy with photosystems
 - Pigment complex helps collect solar energy like an antenna
 - Occur in the thylakoid membranes
- Both pathways produce ATP
- The noncyclic pathway also produces NADPH

Light Reactions: The Noncyclic Electron Pathway

- Takes place in thylakoid membrane
- Uses two photosystems, PS-I and PS-II
- PS II captures light energy
- Causes an electron to be ejected from the reaction center (chlorophyll a)
 - Electron travels down electron transport chain to PS I
 - Replaced with an electron from water
 - Which causes H⁺ to concentrate in thylakoid chambers => [H+] increases in thylakoid
 - Which causes ATP production
- PS I captures light energy and ejects an electron
 - Transferred *permanently* to a molecule of NADP⁺
 - Causes NADPH production

Light Reactions: Noncyclic Electron Pathway

Light Reactions: The Cyclic Electron Pathway

- Uses only photosystem I (PS-I)
- Begins when PS I complex absorbs solar energy
- Electron ejected from reaction center
 - Travels down electron transport chain
 - Causes H⁺ to concentrate in thylakoid chambers
 - Which causes ATP production
 - Electron returns to PS-I (cyclic)
- Pathway only results in ATP production

Light Reactions: Cyclic Electron Pathway

Organization of a Thylakoid

General Biology 1 BIO1101 Syllabus & Textbook: <u>http://goo.gl/rvgdrH</u>

Lecturer:Michael Gotesman, PhDEmail:mgotesman@citytech.cuny.eduOffice Hours:Monday 11:30-12:30Room:Pearl 304

Letter Grade	Numerical
	Ranges
A	93-100
A-	90-92.9
B+	87-89.9
В	83-86.9
B-	80-82.9
C+	77-79.9
С	70-76.9
D	60-69.9
F	59.9 and below

OER & Lrnr Links:

Grade Breakdown: Exams (4): 20% Each Quizzes: 20% Average Lecture:<u>https://openlab.citytech.cuny.edu/bio</u> -oer/page/2/ Lab: <u>https://openlab.citytech.cuny.edu/bio-</u> oer/

Lrnr: https://web.lrnr.us/login/auth

Important Dates: Monday, April 30, 2018 Exam 3 (20% of total lecture grade) Exam 3 will cover lectures 14-21 Bring Pencils Recap

Chloroplasts – site of photosynthesis

- Green parts of plants have chloroplasts (leaves are main site) <u>Mesophyll</u> – tissue layer inside a leaf with high concentration
 - of chloroplasts
 - **<u>Chlorophyll</u>** green pigment that absorbs light
- **<u>Stomata</u>** pores in the leaf where CO_2 enters and O_2 exits
- <u>Stroma</u> central interior of
- chloroplasts
- (inside both membranes)
- <u>Thylakoids</u> membrane sacs inside stroma that contain chlorophyll <u>Vein</u> – Site of Water Transport from root to leaves

Organization of a Thylakoid

Light Reactions

thylakoid lumen

Photosynthetic Reactions: The Light Phase

- Light reactions consist of two alternate electron pathways:
 - Noncyclic electron pathway (PS2 \rightarrow PS1)
 - Cyclic electron pathway (Only PS1)
- Capture light energy with photosystems
 - Pigment complex helps collect solar energy like an antenna
 - Occur in the thylakoid membranes
- Both pathways produce ATP

Photosynthetic Pigments

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a. The absorption spectrums for chlorophylls a and b and the carotenoids.

b. The action spectrum for photosynthesis.

Two phases of Photosynthesis

<u>Light Reactions</u>

- Occur in Thylakoid Membranes
- Chlorophyll aborbs solar energy
- Low-E e⁻'s from H₂O are "excited" and passed to NADP+ to form NADPH
- Some ATP is formed (electron transport chain, pumping of H+).
- $-O_2$ is released
- **<u>Calvin Cycle</u>** (aka "dark reactions")
 - Occurs in the Stroma
 - **Carbon Fixation** CO₂ is reduced to a carbohydrate
 - Carbon is reduced by addition of the high-E e-'s from NADPH
 - This costs some ATP.

Photosynthesis Overview

Calvin Cycle Reactions: Overview of C3 Photosynthesis

- A cyclical series of reactions (similar citric acid cycle but **anabolic** not catabolic)
- Utilizes atmospheric carbon dioxide to produce carbohydrates
- Known as C3 photosynthesis
- Involves three stages:
 - Carbon dioxide fixation
 - Carbon dioxide reduction
 - Ribulose bisphosphate (RuBP) Regeneration

The Calvin Cycle: Fixation of CO₂

Calvin Cycle Reactions: Carbon Dioxide Fixation

- CO₂ is attached to 5-carbon RuBP (Ribulose bisphosphate) molecule
 - Result in a 6-carbon molecule
 - This splits into two 3-carbon molecules (3PG) 3-Phosphoglycerate
 - Reaction accelerated by RuBP Carboxylase (Rubisco-Most abundant protein in chloroplasts, and possibly EARTH)

^₄ CO₂ now "fixed" because it is part of a carbohydrate

The Calvin Cycle: Fixation of CO₂

Inorganic phosphate

Carbon Dioxide Reduction

- 3PG reduced to BPG (1,3 bis-phospho glycerate)
- BPG then reduced to G3P (glyceral-aldehdyde 3phosphate)
- Utilizes NADPH and some ATP produced in light reactions

Regeneration of RuBP

- RuBP used in CO₂ fixation must be replaced
- Every three turns of Calvin Cycle,
 - Five G3P (a 3-carbon molecule) used
 - To remake three RuBP (a 5-carbon molecule)
 - $-5 \times 3 = 3 \times 5$

As five molecules of G3P become three molecules of RuBP, three molecules of ATP become three molecules of ADP + \mathbf{P} .

Importance of Calvin Cycle

- G3P (glyceraldehyde-3-phosphate) can be converted to many other molecules
- The hydrocarbon skeleton of G3P can form
 - Fatty acids and glycerol to make plant oils
 - Glucose phosphate (simple sugar)
 - Fructose (which with glucose = sucrose)
 - Starch and cellulose
 - Amino acids

Light reactions:

- Are carried out by molecules in the thylakoid membranes
- Convert light energy to the chemical energy of ATP and NADPH
- Split H₂O and release O₂ to the atmosphere

Calvin cycle reactions:

- Take place in the stroma
- Use ATP and NADPH to convert CO₂ to the sugar G3P
- Return ADP, inorganic phosphate, and NADP⁺ to the light reactions

C₄ Photosynthesis

- In hot, dry climates
 - Stomata must close to avoid wilting
 - $-CO_2$ decreases and O_2 increases
 - O₂ starts combining with RuBP instead of CO₂
 - Photorespiration, a problem solve in C_4 plants
- In C₄ plants
 - Fix CO₂ to PEP (phospho-enol pyruvate) a C₃ molecule PEP + CO₂ \rightarrow oxaloacetate (C₄ molecule)
 - The result is oxaloacetate, a C_4 molecule
 - In hot & dry climates
 - Avoid photorespiration
 - Net productivity about 2-3 times C₃ plants
 - $\frac{52}{2}$ In cool, moist, can't compete with C₃

Chloroplast distribution in C₄ vs. C₃ Plants

C₃ Plant

CO₂ Fixation in C₄ vs. C₃ Plants

a. CO2 fixation in a C3 plant, blue columbine, Aquilegia caerulea

b. CO2 fixation in a C4 plant, corn, Zea mays

CAM Photosynthesis

- Crassulacean-Acid Metabolism
 - CAM plants partition carbon fixation by time
 - During the night
 - CAM plants fix CO₂
 - Forms C₄ molecules,
 - Stored in large vacuoles
 - During daylight
 - NADPH and ATP are available
 - Stomata closed for water conservation
 - $-C_4$ molecules release CO_2 to Calvin cycle

CO₂ Fixation in a CAM Plant

CO2 fixation in a CAM plant, pineapple, Ananas comosus

CAM Photosynthesis: Crassulacean Acid Metabolism

Climatic Adaptation: Photosynthesis

- Each method of photosynthesis has advantages and disadvantages
- Depends on the climate
- C₄ plants most adapted to:
 - high light intensities
 - high temperatures
 - Limited rainfall
- C₃ plants better adapted to
 - Cold (below 25C)
 - High moisture
- CAM plants better adapted to extreme aridity
 - CAM occurs in 23 families of flowering plants
 - ⁵⁹ Also found among nonflowering plants

Tropical Rain Forests

- Equatorial; Temp>26°C; Rainfall>200cm & uniform
- Most plants woody; many vines and epiphytes; little or no undergrowth
- Contribute greatly to CO₂ uptake, slowing global warming
 - Development has reduced them from 14% to 6% of Earth's surface
 - Deforestation adds 20-30% of atmospheric CO_2 , but also removes CO_2 sink
 - Increasing temps also reduce productivity

ecology Focus

Global Warming and Tropical Rain Forests

RuBisCo – Ribulose Bisphosphate Carboxylase