General Biology 1 BIO1101 Syllabus & Textbook: <u>http://goo.gl/rvgdrH</u>

Lecturer: Michael Gotesman, PhD Email: mgotesman@citytech.cuny.edu

Letter Grade	Numerical
	Ranges
Α	93-100
A-	90-92.9
B+	87-89.9
В	83-86.9
B-	80-82.9
C+	77-79.9
С	70-76.9
D	60-69.9
F	59.9 and below

<u> 0ER</u>

Lecture:<u>https://openlab.citytech.cuny.edu/bio-oer/page/2/</u>Lab: <u>https://openlab.citytech.cuny.edu/bio-oer/</u>

Grade Breakdown:

Exams (4): 20% Each Quizzes: 20% Average

Recap: Meeting 13

A. Plasma Membrane

- 1) Common to all cells
- 2) Made of phospholipid bilayer
 - 1)- hydrophobic/hydrophilic -- amphipathic
- 3) Also has cholesterol/lipids and protein
- 4) Fluid Mosaic model
- **B.** Proteins around cell membrane Integral sometimes transmembrane Peripheral function of proteins in membrane?

Name:

KWL Chart

Select a topic you want to research. In the first column, write what you already know about the topic. In the second column, write what you want to know about the topic. After you have completed your research, write what you learned in the third column. What I **K**now What I **W**ant to Know What I **L**earned

What I Know	What I W ant to Know	What I L earned

Bio 1101- Lecture 14

Introduction to Metabolism

Energy = Capacity to do work

- Kinetic Energy The Energy of MOTION
- Potential Energy Energy that is STORED (in position or structure)
 - Chemical energy Energy stored in chemical bonds

Metabolism...

…The sum of all an organism's chemical reactions

- …The management of a cell's material and Energy resources
- Anabolic Pathways consume Energy by building large molecules out of smaller ones.
- <u>Catabolic Pathways</u> release Energy by breaking down large molecules into smaller ones
 - \bullet e.g., glucose broken down to CO₂ and H₂O.
 - The released Energy powers the cells (ATP)
- Energy Coupling Energy released from Catabolic pathways is used to drive Anabolic pathways

Carbohydrate Synthesis

Anabolic or Catabolic?

Carbohydrate Metabolism

Anabolic or Catabolic?

Flow of Energy

Energy = Capacity to do work

- Thermodynamics the study of energy transformations (transfer) in a "system"
 - System vs. surroundings
- <u>Entropy</u> disorder (randomness)
 - Entropy is the measurement of disorder
- Bioenergetics study of how an organism manages energy resources

The Laws of **Thermodynamics**

First Law – The E in the universe is constant

- Law of conservation of energy
- Energy cannot be created or destroyed, but
- Energy CAN be changed from one form to another

The Laws of **Thermodynamics**

- First Law The E in the universe is constant
- Second Law the Entropy of the universe is INCREASING
 - Law of entropy
 - When energy is changed from one form to another, there is a loss of usable energy
 - Waste energy goes to increase disorder

"SPONTANEOUS" REACTION

as time elapses

ORGANIZED EFFORT REQUIRING ENERGY INPUT

Cells and Energy

- Things, reactions tend to go to a state of higher entropy:
- -less organized
- -lower energy but
- more stable

In order to keep it's high level of **organization**, a cell or a living organism needs a constant input of **energy**

Gibbs Free-energy (G)

- Combines potential E, kinetic E, and entropy
- * G is most useful when looking at CHANGE (Δ G)
- * $\Delta G = G(final) G(initial)$
- Negative value in ∆G means free energy is RELEASED
 - SPONTANEOUS, FAVORABLE, no E required
- Positive value in ∆G means free energy is ABSORBED
 - Non-spontaneous, unfavorable, E is required

Exergonic vs Endergonic

Exergonic – A negative ΔG (spontaneous)

- Exergonic reactions "just happen" and gradually move toward equilibrium.
- **<u>Endergonic</u>** a positive ΔG (non-spontaneous)

These reactions require E input from outside source

Gibbs and Metabolism

 In a chemical rxn, Equilibrium is achieved when FORWARD rxn proceeds at same rate as reverse rxn.
 Thus... <u>at Equilibrium, ΔG = 0</u> (performs no work)

Endergonic – a positive ΔG (non-spontaneous)

These reactions require E input from outside source

Move the system AWAY from equilibrium

Must <u>COUPLE</u> a +∆G reaction to a -∆G reaction!

- Less stable
- Greater work capacity

In a spontaneous change

- The free energy of the system decreases (ΔG < 0)
- The system becomes more stable
- The released free energy can be harnessed to do work
 - Less free energy (lower G)
 - More stable
 - Less work capacity

Examples

More Examples

∆G and cellular metabolism

Cellular Respiration:

Please Drink Responsibly

• $\Delta G = -686 \text{ kcal/mol} \sim 180g + Chemical Energy!$

Spontaneous? Yes!

Exer- or Ender-gonic? Exergonic

Photosynthesis:

- Solar Energy \downarrow 6 CO₂ + 6 H₂O \rightarrow C₆H₁₂O₆ + 6 O₂
 - $\Delta G = ? +686 \text{ kcal/mol}$
 - Spontaneous? Nope!
 - Exer- or Ender-gonic? Endergonic

ATP: the "currency" of cellular E

Three types of cellular work:

- Mechanical work, Transport work, Chemical work
- These are all endergonic things!
- Must be coupled to exergonic things
- ATP mediates most energy coupling in cells
 - ATP is "unstable," meaning has high free-energy (G)
 - So, hydrolysis of ATP releases energy!

The Hydrolysis of ATP...

- ... is very EXERGONIC ($\Delta G = -7.3 \text{ kcal/mol}$)
- …is easy to couple to other things!
- …involves water!
- The crowding of negative charges is like a "loaded spring"
- Cellular respiration has overall VERY negative ∆G
 Makes LOTS of ATP, drives all cellular work!
 - $\Delta G = -7.3$ kcal/mol ~ 507 g (ATP) $\Delta G = -686$ kcal/mol ~ 180g (C₆H₁₂O₆) Which is more Exergonic?

The ATP Cycle

ATP cycle

- The E from catabolism (exergonic) generates ATP (from ADP and P_i)
- This drives anabolism (endergonic), which consumes ATP (back to ADP and P_i)

ATP and Coupled Reactions

Adenosine triphosphate (ATP)

- High energy compound used to drive metabolic reactions
- Constantly being generated from adenosine diphosphate (ADP)

Composed of:

- Adenine and ribose (together = adenosine), and
- Three phosphate groups

Coupled reactions

- Energy released by an exergonic reaction captured in ATP
- That ATP used to drive an endergonic reaction

Coupled Reactions

a. ATP breakdown is exergonic.

 Muscle contraction is endergonic and cannot occur without an input of energy. ATP ADP + P

muscle contraction

c. Muscle contraction becomes exergonic and can occur when it is coupled to ATP breakdown.

Coupling to ATP hydrolysis

Quiz 6 – Not today

Study Strategies

Name:

Date:

KWL Chart

Select a topic you want to research. In the first column, write what you already know about the topic. In the second column, write what you want to know about the topic. After you have completed your research, write what you learned in the third column.

What I K now	What I W ant to Know	What I L earned

Name:Quiz 603/22/16Q1 (20 points): True or False, All Cells have a plasma membrane?

Q2 (10 points): Plasma membrane are mostly made of this special molecule. It can be abbreviated as PLB, what does PLB stand for?

Q3 (20 points): True or False, All Cells have a Cell Wall?

Q4 (10 points): What is the main component of Cell Walls (name of the compound?

Q5 (20 points): True or False, water would move into a cell from a very salty solution?

Q6 (20 points): True or False, Anabolic reactions breakdown larger molecules into smaller ones?

EC (5 points): How many States are there in the USA?