General Biology 1 BIO1101

Syllabus & Textbook: http://goo.gl/rvgdrH

Lecturer: Michael Gotesman, PhD

Email: mgotesman@citytech.cuny.edu

Letter Grade	Numerical
	Ranges
Α	93-100
A-	90-92.9
B+	87-89.9
В	83-86.9
B-	80-82.9
C+	77-79.9
С	70-76.9
D	60-69.9
F	59.9 and below

OER

Lecture: https://openlab.citytech.cuny.edu/bio-oer/page/2/

Lab: https://openlab.citytech.cuny.edu/bio-oer/

Grade Breakdown:

Exams (4): 20% Each

Quizzes: 20% Average

The Cell Cycle

Mitosis

Cytokinesis →

Chromosomes

- What are Chromosomes and why do we care if they move apart?
- Chromosomes are the physical basis of inheritance (brown hair or anything else)
- Locus the physical location of a gene (trait) on a chromosome (plural = loci)

Mitotic chromosome:

Each chromosome has 2 arms

- •p short arm (p for petit)
- •q long arm (q for queue)

Three specialized sequences that play role in **DNA** replication

(1 Telomere for each end)

<u>Karyotype</u> – arrangement (by length) of a person's chromosomes, longest to shortest, (sex chromosomes last).

Humans: 23 pairs of chromosomes:

22 pairs of autosomes (non-sex)

1 pair of sex chromosomes (X and Y)

- XX = female, male = XY
- Thus, X chromosome is essential,
- Y is not
 - X is large,
 - Y is very small (diminutive)

So Total = 23 pairs, (n=23)

Duplicated Chromosome

A karyogram

Chromosome:

- Chroma: color
- Soma: body

23 – Chromosomes ~23,000 Genes

The DNA double helix

- Two polymers (strands) line up, then form a <u>double helix (twisted ladder)</u>
- The sides of the ladder are the sugars and the phosphate groups
- The "rungs" of the ladder are the Nitrogen bases
- The bases hydrogen bond to each other in a specific way called "base pairing"

Interphase chromosome from lysed nucleus (SEM)

interphase DNA/Chromosome is very condense- 500X

Compared to

Mitotic DNA 10,000X!

- Human DNA can stretch for 2 meters
- A nucleus is between 5-8 micrometers in diameter
- Micro = 10^{-6}
- How DNA is packed into a cell????
- What is the mechanism for DNA compaction?

10 μm

Chromosomes: Structure

- Chromosomes consist of highly compacted DNA (Genetic Code)
- •**DNA** is negatively charged → Phosphate (PO₄-) backbone
- .Histones are positively charged proteins that associate with eukaryotic DNA
- <u>Nucleosomes</u> are basic units of chromatin structure of DNA (~150 DNA double stranded particles) wound around a histone core

Nucleosome Core Particle – Histone Octamer

First Level of DNA Compaction (11 nm particle) ~150 bp of DNA (2 nm) wrap around a Histone core Histone Core -- 2X (H2A, H2B, H3, H4) → 8 proteins in total

"Beads on a string" -- ~6x compaction

Chromatin = DNA plus proteins called histones

Nano = 10^{-9}

30nm chromatin fiber- Role of H1 histone (linker histone)

Figure 5-24 Essential Cell Biology (© Garland Science 2010)

Second Level of Compaction – Chromosome Fibers (40X)

A) packed chromatin (Uses H1 + Histone Core)

Mitosis requires More packing

DNA Compaction:

Histone Core Complex: Octomer (2- H2A, H2B, H3,

- 1. DNA double helix 2 nm
- 2. Nucleosome "Beads on a string" 11 nm (~200 bp) 147 bp (1.65 turns) around histone core (6X
- 3. Chromatin fiber 30 nm (H1) --- Total (40X
- 4. Loops (300 nm) --- Total (500X compaction)
- 5. Chromatid 700 nm --- Total (10,000X compaction)

What about during interphase?

Interphase chromosomes occupy distinct segments of nucleus

Different states of chromosome compaction during cell cycle

Chromatin and chromosomes

Who cares about DNA compaction?

Heterochromatin: condensed chromatin. So condensed genes within cannot be expressed.

The rest of the chromosome is called: **Euchromatin** (true chromatin).

Human Chromosomes

Abnormal Karyotype Chromosome 12- ataxia: genetic defect

Chromosomal Translocation

Changes in Chromosome Structure

- · Great apes: Human, Bonobo, Chimpanzee, Gorilla, Orangutan
- Hominids contain 23 pairs of chromosomes (46 Chromosomes)
- Non-hominid great apes have 24 pairs (48 chromosomes)
- There is abundant evidence that human chromosome 2 arose from a translocation event
 - Robertsonian translocation the fusion of 2 acrocentric chromosomes
 - Acrocentric one arm much shorter than the other

GREAT APES COMPARATIVE KARYOTYPE (HSA - PTR- GGO - PPY)

Human and Mouse Synteny Map

Synteny: physical co-localization of genetic loci on the same chromosome of a species or between species on different parts of chromosomes

Closely related species can have different chromosome numbers

Muntjac deer

Yet the same number of genes!

Can these two mate?

Chromatin Structure: Gene regulation

- Histones are structural proteins responsible for packaging chromosomes
 - Five primary types of histone molecules
 - DNA double helix is wound at intervals around a core of eight histone molecules (called <u>nucleosome</u>)
 - Nucleosomes are joined by "linker" DNA.
- Chromosomes are single linear DNA molecules complexed with protein
 - **Euchromatin** actively genes (loosely wound)
 - Heterochromatin is inactive genes (tightly packed)

Histone Code -- Acetyl, phosphate or methyl group additions

Figure 5-28 Essential Cell Biology (© Garland Science 2010)

Variations in chromatin structure in a single interphase chromosome

Heterochromatin: condensed chromatin. So condensed genes within cannot be expressed.

The rest of the chromosome is called: **Euchromatin** (true chromatin).

Chromatin Structure: Gene regulation

- Euchromatin
 - Loosely coiled DNA that is active
- Heterochromatin
 - Tightly packed DNA that is inactive
 - Facultative → can be activated
 - Constitutive → always off like centromeres
- Barr Bodies
 - Females have two X chromosomes, but only one is active
 - Other is tightly packed along its entire length
 - Inactive X chromosome is Barr body
 - Barr body is facultative heterochromatin

H2B histone protein
histone tail

DNA H1

a: Courtesv Stephen Wolfe

c. DNA unpacking

During DNA replication: nucleosome histones are randomly distributed-

This type of inheritance is called:

epigenetic inheritance (part of histone code).

epi= above)

Figure 5-30 Essential Cell Biology (© Garland Science 2010)

Recap: Lecture 23

1. **DNA Compaction:**

Human genome spans 2 meters, fits into nucleus (5-8 µm diameter)

Active genes **500X** compacted, Inactive mitotic DNA (**10,000X**)

2. Histone Core Complex: Octomer (2- H2A, H2B, H3, H4)

DNA double helix – 2 nm

Nucleosome "Beads on a string" – 11 nm (~200 bp)

147 bp (1.65 turns) around histone core (6X compaction)

Chromatin fiber – 30 nm (H1) --- Total (40X compaction)

Loops (300 nm) --- Total (500X compaction)

Chromatid 700 nm --- Total (10,000X compaction)

3. Chromosome Organization:

- A. Chromosome vs chromatid
- B. p arm, q arm, centromere
- C.Ori (replication), Telomeres
- D.Heterochromatin/Euchromatin

4. Epigenetics

- 1. Histone Code (M, A, P) H3
- 2. X-chromosome inactivation (Barr bodies)

Who cares about DNA compaction?

Chromatin Structure: Gene regulation

Epigenetics -heritable changes in gene expression or cellular phenotype caused by mechanisms other than changes in the underlying DNA sequence

Rainbow

CC's coloration resulted from a lack of mosaicism

Cute cats care about DNA compaction

Mistakes in chromosome segregation can occur in somatic cells

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

(c) A gynandromorph

Mosaic organism

- Aneuploid cells can survive and undergo further rounds of mitosis, producing clones of aneuploid cells
- Side-by-side existence of aneuploid and normal tissues

Yeast contains about 6300 genes, spread over 16 Chromosomes (for human ~23000 genes)

Genes can be encoded on either of the 2 strands