General Biology 1 BIO1101

Syllabus & Textbook: http://goo.gl/rvgdrH

Lecturer: Michael Gotesman, PhD

Email: mgotesman@citytech.cuny.edu

Letter Grade	Numerical				
	<u>Ranges</u>				
Α	93-100				
A -	90-92.9				
B+	87-89.9				
В	83-86.9				
B-	80-82.9				
C+	77-79.9				
С	70-76.9				
D	60-69.9				
F	59.9 and below				
F	59.9 and below				

<u>OER</u>

Lecture: https://openlab.citytech.cuny.edu/bio-oer/page/2/

Lab: https://openlab.citytech.cuny.edu/bio-oer/

Grade Breakdown:

Exams (4): 20% Each

Quizzes: 20% Average

Recap Lecture 20: The Cell Cycle

- Asexual Reproduction when a single organism gives rise to offspring (no exchange of DNA)
- Binary Fission (Prokaryotes -- bacteria) produces clones
- **Clone** genetically identical individuals
- <u>Life Cycle</u> the generation-to-generation sequence of genetic "stages" in the reproductive process (how cells replicate)
- The two major stages of the cell cycle (Eukaryotes):
 - Interphase,
 - G1, S, G2
 - Mitosis
 - Karyokinesis
 - Prophase
 - Metaphase
 - Anaphase
 - Telophase
 - Cytokinesis

SEXUAL REPRODUCTION

https://openlab.citytech.cuny.edu/bio-oer/cell-division/

Human Chromosomes

- Humans: 23 pairs of chromosomes:
 - n = 23. So 2n = 46
- 22 pairs of <u>autosomes</u> (non-sex)
- 1 pair of <u>sex chromosomes</u> (X and Y)
 - XX = female, male = XY
 - Thus, X chromosome is essential, Y is not
 - X is large, Y is very small
- 22 So Total = 23 pairs, (n=23)
- Karyotype arrangement (by length) of a person's chromosomes, longest to shortest, (sex chromosomes last).

Pair of homologous chromosomes

Human Life Cycle

- Somatic cells are all <u>diploid</u> (2n)
 - Two copies of every chromosome.
- Gametes (germ cells) are all <u>haploid</u> (one copy, 1n)
- Humans: 23 pairs of chromosomes n = 23. So 2n =
 46
- Fusion of two gametes (1n) results in a 2n zygote.
- Pairs are called <u>Homologous</u> and are NOT identical
 - One is maternal, one paternal
 - Homologues have the same genes, but different VERSIONS of some genes

Definitions for Sexual Reproduction

- Gene a heritable trait (characteristic)
- Genetics study of heredity
- Heredity the transmission of traits (characteristics) from one generation to the next
- Variation in sexual reproduction, offspring are not identical to parents or each other
 - Individuals have unique combinations of parental genes

HomologousChromosomes

- -They have the same length
- centromeres are positioned in the same place
- One came from the father (the paternal homolog) the other from the mother (the maternal homologue)
- When stained, they show similar banding patterns
- -Because they have genes controlling the same traits at the same positions

Homologous Pairs of Chromosomes

- Many genes exist in several variant forms in a large population
- Homologous copies of a gene may encode identical or differing genetic information
- The variants that exist for a gene are called alleles
- An individual may have:
 - Identical alleles for a specific gene on both homologs (homozygous for the trait), or
 - A maternal allele that differs from the corresponding paternal allele (heterozygous for the trait)

Meiosis: Halves the Chromosome Number

- Special type of cell division
- Used only for sexual reproduction
- Halves the chromosome number prior to fertilization
 - Parents diploid
 - Meiosis produces haploid gametes
- Fertilization (or syngamy) is when gametes fuse.
 - This re-establishes the diploid state
 - Resulting individual will have a unique combination of maternal and paternal chromosomes

Overview of Meiosis

Meiosis I: Prophase I & Metaphase I

- Meiosis I (reductional division):
 - Prophase I
 - Each chromosome internally duplicated (consists of two identical sister chromatids)
 - Homologous chromosomes pair up synapsis
 - Physically align themselves against each other end to end
 - End view would show four chromatids Tetrad
 - Metaphase I
 - Homologous pairs arranged onto the metaphase plate

MEIOSIS I: Separates homologous chromosomes

PROPHASE I METAPHASE I ANAPHASE I

Chromosomes duplicate

Homologous chromosomes (red and blue) pair and exchange segments; 2n = 6 in this example

Tetrads line up

Pairs of homologous chromosomes split up

Meiosis I: Anaphase I & Telophase I

Anaphase I

- Synapsis breaks up
- Homologous chromosomes separate from one another
- Homologues move towards opposite poles
- Each is still an internally duplicate chromosome with two chromatids

Telophase I

- Daughter cells have one internally duplicate chromosome from each homologous pair
- One (internally duplicate) chromosome of each type (1n, haploid)

Meiosis I: Cytokinesis I & Interkinesis

- Cytokinesis I
 - Two daughter cells
 - Both with one internally duplicate chromosome of each type
 - Haploid
 - Meiosis I is reductional (halves chromosome number)
- Interkinesis
 - Similar to mitotic interphase
 - Usually shorter
 - No replication of DNA

Genetic Variation: Crossing Over

- Meiosis brings about genetic variation in two key ways:
 - Crossing-over
 - Independent assortment of homologous chromosomes
- 1. Crossing Over:
 - Exchange of genetic material between nonsister chromatids during meiosis I
 - At synapsis, a nucleoprotein lattice (called the synaptonemal complex) appears between homologues
 - Holds homologues together
 - Aligns DNA of nonsister chromatids
 - Allows crossing-over to occur
 - Then homologues separate and are distributed to
 different daughter cells

Crossing Over

Genetic Variation: Independent Assortment

- 2. Independent assortment:
 - When homologues align at the metaphase plate:
 - They separate in a random manner
 - The maternal or paternal homologue may be oriented toward either pole of mother cell
 - Causes random mixing of blocks of alleles into gametes

Independent Assortment

3. Anaphase I – Homologous Chromosomes separate

Meiosis II: Similar to Mitosis

- Unremarkable
- Virtually indistinguishable from mitosis of two haploid cells
- Prophase II Chromosomes condense
- Metaphase II chromosomes align at metaphase plate
- Anaphase II
 - Centromere dissolves
 - Sister chromatids separate and become daughter chromosomes
- Telophase II and cytokinesis II
 - Four haploid cells
 - All genetically unique

MEIOSIS II: Separates sister chromatids

TELOPHASE I AND TELOPHASE II AND **PROPHASE II METAPHASE II ANAPHASE II** CYTOKINESIS **CYTOKINESIS** Cleavage Haploid daughter cells furrow forming Sister chromatids separate

Two haploid cells form; chromosomes are still double

During another round of cell division, the sister chromatids finally separate; four haploid daughter cells result, containing single chromosomes

Meiosis I & II in Plant and Animal Cells

Genetic Variation: Fertilization

- When gametes fuse at fertilization:
 - Chromosomes donated by the parents are combined
 - In humans, $(2^{23})^2 = 70,368,744,000,000$ chromosomally different zygotes are possible
- If crossing-over occurs only once
 - (4²³)², or 4,951,760,200,000,000,000,000,000
 genetically different zygotes are possible

Who cares about genetic variation?

Genetic Variation: Significance

- Asexual reproduction produces genetically identical clones
- Sexual reproduction cause novel genetic recombinations
- Asexual reproduction is advantageous when environment is stable
- However, if environment changes, genetic variability introduced by sexual reproduction may be advantageous

Meiosis Compared to Mitosis

Summary of Cell Division

	Mitosis			Meiosis		
Number of Cells at start	A.	1		В.		1
Number of Cells at end	C.	2		D.	. '	4
Number of Cell divisions	E.	1		F.		2
Chromosome number (N)		t: <u>2N</u> _ <u>2N</u>	G. I.		2N 1N	H. J.
Number of chromosomes in the cell at start of process (human cell)	K	23X2	2 = 46	L	23X	2 = 46
Number of chromosomes in the cell at end of process (human cell)	М	4	6	N		23
Daughter cells (N or 2N)	0	2	N	Р		1N
Daughter cell genetics (identical or non-identical)	Q Identical			R Non-Identical		
Purpose of division	S	rowth/Rege	neration	T Gam	ete Produ	ıction

https://www.youtube.com/watch?v=KzraEW0TpnY

Meiosis versus Mitosis

Meiosis

- Requires two nuclear divisions
- Chromosomes synapse and cross over
- Centromeres survive Anaphase I
- Halves chromosome number
- Produces four daughter nuclei
- Produces daughter cells genetically different from parent and each other
- Used only for sexual reproduction

Mitosis

- Requires one nuclear division
- Chromosome do not synapse nor cross over
- Centromeres dissolve in mitotic anaphase
- Preserves chromosome number
- Produces two daughter nuclei
- Produces daughter cells genetically identical and to each other
- Used for asexual reproduction and growth

Alternation of Generation

- For species that reproduce sexually, they must alternate between haploid and diploid stages in order to exchange genetic information between individuals
- For animals, the haploid stage is very short just the gametes.
- Many fungi are opposite: adults are haploid, when gametes fuse, a diploid zygote is created that quickly undergoes meiosis to go back to haploid.
- In many plants, both stages can be long, and multicellular

The Human Life Cycle

Life Cycle Basics: Animals

- In familiar animals:
 - "Individuals" are diploid; produce haploid gametes
 - Only haploid part of life cycle is the gametes
 - The products of meiosis are always gametes
 - Meiosis occurs only during gametogenesis
 - Production of sperm
 - Spermatogenesis
 - All four cells become sperm
 - Production of eggs
 - Oogenesis
 - Only one of four nuclei get cytoplasm
 - » Becomes the egg or ovum
 - » Others wither away as polar bodies

Gametogenesis in Mammals

The Human Life Cycle

- Sperm and egg are produced by meiosis
- A sperm and egg fuse at fertilization
- Results in a zygote
 - The one-celled stage of an individual of the next generation
 - Undergoes mitosis
- Results in multicellular embryo that gradually takes on features determined when zygote was formed
- All growth occurs as mitotic division
- As a result of mitosis, each somatic cell in body
 - Has same number of chromosomes as zygote
 - Has genetic makeup determined when zygote was formed

Review Mitosis & Meiosis

- Name three purposes for cell division in animals.
- How does the genome (DNA) exist during Interphase?
- In which phase of mitosis do sister chromatids separate from one another?
- What is a somatic cell?
- Name two things that happen during S phase. What is BEFORE S? After?
- What is the spindle apparatus made of? Anchored by what?
- Name one thing that happens during prometaphase.
- What is cytokinesis?
- In which phase of meiosis do sister chromatids separate from one another?
- A cell plate is to plants what a _____ is to animals.
- In humans, the haploid stage occurs in which cells?
- The G1 checkpoint is also called what?
- Meiosis II is very similar to mitosis... but how is it different?
- In which phase of mitosis do homologous pairs separate from one another?
- What are the proteins that control the cell cycle clock?
- What is a tetrad? What is crossing-over?
- Write three differences between mitosis and meiosis.
- How many autosomes do humans have?

Review Videos

https://www.khanacademy.org/science/biology/cellular-molecular-biology/mitosis/v/interphase