General Biology 1 BIO1101

Syllabus & Textbook: http://goo.gl/rvgdrH

Lecturer: Michael Gotesman, PhD

Email: mgotesman@citytech.cuny.edu

Letter Grade	Numerical
	<u>Ranges</u>
Α	93-100
A-	90-92.9
B+	87-89.9
В	83-86.9
B-	80-82.9
C+	77-79.9
С	70-76.9
D	60-69.9
F	59.9 and below

<u>OER</u>

Lecture: https://openlab.citytech.cuny.edu/bio-oer/page/2/

Lab: https://openlab.citytech.cuny.edu/bio-oer/

Grade Breakdown:

Exams (4): 20% Each

Quizzes: 20% Average

Recap: Lecture 15

- A. Enzymes are Organic Catalysts
- 1) Lower the E_a (Activation energy) of reaction
- 2) They participate in Metabolic reactions

B. 4 Steps in reaction:

What's an active site?

- C. Factors that effect Enzyme Activity
- 1) Temperature
- 2) pH
- 3) Substrate concentration
- D. Enzyme Control
- A) Activation/Inhibition
- B) Direct/Indirect (Allosteric)

Metabolic Control

- Not all metabolic pathways are "turned on" all the time.
- Enzyme pathways are "regulated" (ON or OFF as needed)
 - Sometimes, enzyme are only MADE when needed
 - More often... they are controlled by <u>allosteric</u>
 <u>regulation</u>
 - Can be positive or negative
- Feedback Inhibition is the most common
 - This is when the final product of a pathway (in high concentration) inhibits the enzymes of that pathway

Allosteric regulation:

Lactate dehydrogenase is composed of four subunits (tetramer).

Irreversible Inhibition

- Materials that irreversibly inhibit an enzyme are known as poisons
- Cyanides inhibit enzymes resulting in all ATP production
- Penicillin inhibits an enzyme unique to certain bacteria
- Heavy metals irreversibly bind with many enzymes
- Nerve gas irreversibly inhibits enzymes required by nervous system

- Q1 (10 points): True or False, All the Energy of the universe is constant? Q2 (10 points): True or False, There's a tendency for Entropy to decrease during reactions?
- Q3 (10 points): True or False, When the ΔG change in Gibb's is positive, the reaction will be spontaneous (occur on its own)?
- Q4 (20 points): Explain the difference between Endergonic and Exergonic? (Fill in the blank) In an endergonic rxn.... In an exergonic....
- Q5 (20 points): Explain the difference between Anabolic and Catabolic? (Fill in the blank) Anabolic rxn.... In an catabolic....
- Q6 (10 points): What is the currency of the cell?
- Q7 (10 points): What do we call an organic catalyst made of protein?
- Q8 (10 points): What is meant by the terms: product & substrate?

Cellular Respiration

Review of Energy Flow

- E comes to earth from the sun:
- Solar E converted to chemical E by photosynthesis (chloroplasts)
 - Glucose
- Cells harvest Chemical E by Respiration (mitochondria)
 - ATP
- The E of ATP powers cellular "work"
 - Most E is actually lost as heat along the way!

Oxidation-Reduction

- Oxidation-reduction (redox) reactions:
 - Electrons pass from one molecule to another
 - The molecule that loses an electron is oxidized
 - The molecule that gains an electron is reduced
 - Both take place at same time
 - One molecule accepts the electron given up by the other

Oxidation / Reduction (redox)

- Oxidation = loss of electrons
- Reduction = gain of electrons
 - Tip think "reduction" of charge number
- This is why they always occur together (redox)
- Other rules of Redox
 - Gain of O = oxidation, loss of O = reduction
 - Gain of [H⁻] = reduction, loss of [H⁻] = oxidation
 - Tip the "H" always goes with the e⁻'s
 - This is because, in redox, the e⁻¹s are passed as a hydride ion (H⁻)

Examples

Respiration is catabolism

- There are 2 catabolic pathways for sugars:
 - Fermentation anaerobic (no O₂ required), only partial degradation, much less E harvested
 - Cellular Respiration aerobic (O₂ required), COMPLETE oxidation of all carbons to CO₂
 - Much more E is harvested
- The catabolic reactions of life involve the transfer of high-energy electrons. Thus, these are called Oxidation/Reduction reactions

NAD⁺ and FAD

- NAD+ (nicotinamide adenine dinucleotide)
 - Called a coenzyme of oxidation-reduction it can
 - Oxidize a metabolite by accepting electrons
 - Reduce a metabolite by giving up electrons
 - NAD+ + H- → NADH
 - Each NAD+ molecule used over and over again
- FAD (flavin adenine dinucleotide)
 - Also a coenzyme of oxidation-reduction
 - Sometimes used instead of NAD+
 - Accepts two electrons and two hydrogen ions (H+) to become FADH₂ 15

NAD+ Cycle

Cellular Respiration

- A cellular process that requires oxygen and gives off carbon dioxide
- Usually involves breakdown of glucose to carbon dioxide and water

Oxidation-reduction enzymes include NAD+ and

FAD as coenzymes

Energy extracted from glucose:

- Released step-wise
- Allows ATP to be produced efficiently

The energy of electrons

- e-'s that are in C-H bonds are shared equally (nonpolar bond)
 - Thus, the e in C-H are considered "high energy"
- Explanation....
- Pulling e- from a MORE electronegative and giving to a LESS electronegative atom would require E. (Splitting H₂O)
 - This is what photosynthesis does!
- So, passing e- from a LESS electronegative atom to a MORE electronegative atom RELEASES E
- Remember that the H goes with the e⁻ (as H⁻)

e-'s are passed in small steps

- In order to be best harvested, the E from glucose must be released in small steps
- e⁻'s are taken from glucose and passed to the e⁻ carrier, NAD+
 - NAD+ is a co-enzyme, also a nucleotide!
- As glucose is oxidized, NAD+ is reduced to NADH and holds the high-energy electrons for later steps (ATP production)
- The transfer is conducted by a <u>dehydrogenase</u> enzyme
- A lone proton (H+) is also lost from glucose.

The fate of electrons

- The "high-energy" e⁻'s that are taken from glucose are first passed to NAD+ to form NADH
 - Very little loss of E for this step
- Then, they are passed to the <u>electron transport</u>
 <u>chain</u> on the inner membrane of the mitochondria
- The e⁻ transport chain, in many steps, gradually harnesses the E for ATP production
- The e^{-'}s are eventually passed to O₂ and H₂O is formed!

The Three Major Steps of Respiration that produce ATP

- Glycolysis -- Cytoplasm
- Krebs Cycle Mitochondria
- Electron Transport Chain -- Mitochondria

The Four Phases of Respiration

1- Glycolysis

- Initial oxidation (breakdown) of 1 glucose into 2 pyruvate molecules
- Occurs in cytoplasm
- Does NOT require oxygen! (anaerobic)
- ATP is formed
- Pyruvate transferred into Mitochondria

2 - Transition reaction (Preparatory stage)

- Occurs in Mitochodria
- Both pyruvates are oxidized
- Electron energy is stored in NADH
- Two carbons are released as CO₂
- No ATP is formed

The Four Phases of Respiration

3 - Citric acid cycle

- Aka "Krebs cycle" and "TCA cycle" tricarboxylic acid
- completes oxidation of pyruvate
- Occurs in matrix of mitochondria
- Electron energy is stored in NADH and FADH₂
- ATP is formed
- Four carbons are released as CO₂

4- Oxidative phosphorylation (OxPhos) -- ETC

- Uses high-energy e^{-'} s to generate ATP
- Extracts energy from NADH & FADH₂
- Produces 32 or 34 molecules of ATP
- Occurs in the Cristae of Mitochondria
- 1) ETC = e⁻ transport chain uses the energy from the e⁻'s
- 2) <u>chemiosmosis</u> (makes the ATP)

Glycolysis

Glycolysis

Glycolysis Summary

- Begin with ONE glucose molecule:
 - That's 6 carbons!
- Gets phosphorylated on BOTH ends
 - This costs two ATPs
- Gets chopped in half (so two 3-C molecules)
- Both "halves" are converted to pyruvate (3 C's)
 - Along the way:
 - 1 NADH generated per "half" (so 2 total)
 - " " (" 2 ") " " (" 4 ") 1 water
 - " 2 ATPs
 - But remember, it took 2 to get started, so net of 2 ATP!
- Note... No O₂ required, no CO₂ created, occurs in cytoplasm.

Glycolysis: The Balance Sheet

Glycolysis

outputs

2 pyruvate

2 NADH

2 ADP

4 ATP total

After glycolysis, only about ¼ of the E of glucose is harvested, most remains in the pyruvates!

Energy investment phase

Net
$$Glucose \longrightarrow 2 \text{ Pyruvate} + 2 \text{ H}_2\text{O}$$

$$4 \text{ ATP formed} - 2 \text{ ATP used} \longrightarrow 2 \text{ ATP}$$

$$2 \text{ NAD}^+ + 4 e^- + 4 \text{ H}^+ \longrightarrow 2 \text{ NADH} + 2 \text{ H}^+$$

The Preparatory phase (Mitochondria)

- After glycolysis but before Krebs
- The pyruvates are transported into the matrix of the mitochondria
- 2 of the C's from pyruvate are attached to CoA to form Acetyl-CoA
- 1 C released as CO₂ & 1 NADH generated / pyruvate

Mitochondrion: Structure & Function

Mitochondrion: Structure & Function

Metabolism & Organelles by

N9NOFIAE

MITOCHONDRIA DYNAMICS

https://dms.licdn.com/playback/C4E05AQGmQ5nroZDgYQ/5935fba320ca4ee49a5c18a07c6e756b/feedshare-mp4 3300-captions-thumbnails/1507940147251-drlcss?e=1542564000&v=beta&t=s1jleKdsWPbxo1PhyBvl-RKxTyLpqoP6XKy8kmcRLqs

Preparatory Reaction

General Biology 1 BIO1101

Syllabus & Textbook: http://goo.gl/rvgdrH

Lecturer: Michael Gotesman, PhD

Email: mgotesman@citytech.cuny.edu

Letter Grade	Numerical
	Ranges
Α	93-100
A-	90-92.9
B+	87-89.9
В	83-86.9
B-	80-82.9
C+	77-79.9
С	70-76.9
D	60-69.9
F	59.9 and below

<u>OER</u>

Lecture: https://openlab.citytech.cuny.edu/bio-oer/page/2/

Lab: https://openlab.citytech.cuny.edu/bio-oer/

Grade Breakdown:

Exams (4): 20% Each

Quizzes: 20% Average

Recap: Meeting 16

- A. Catabolic Pathways:
- 1) Fermentation (anaerobic) without O₂
- 2) Cellular Respiration (aerobic) with O₂
 - A) Glycolysis -- Cytoplasm
 - B) Krebs Cycle (TCA) Mitochondria
 - C) Electron Transport Chain -- Mitochondria
- B. Oxidation/Reduction Transfer of electrons
- 1) Cellular Respiration: NAD+/NADH + FAD/FADH₂ (e⁻) Carriers
- 2) Glycolysis: $C_6H_{12}O_6 + 2ATP \rightarrow$ 2 Pyruvate (3C) + 4 ATP
- 3) Preparatory step (mitochondria):
- Pyruvate (3C) → acetyl (2C)-CoA
- + NADH + CO₂

Citric Acid Cycle

- Acetyl-CoA (2 C's) enters the Krebs by joining with the 4-Carbon molecule Oxaloacetate
 - So now back to a 6-Carbon molecule
- As the cycle "turns"
 - Two Carbons are completely oxidized to CO₂ and released
 - The remaining 4-Carbon molecule is transformed back into oxaloacetate, to start the cycle over with another acetyl-CoA
 - Generated: 3 NADH, 1 FADH₂, 1 ATP, 2 CO₂
- Because glucose yields TWO pyruvates, you get TWO turns of the cycle per glucose!

Citric Acid Cycle: Balance Sheet

Citric acid cycle

inputs

2 acetyl groups

6 NAD+

2 FAD

2 ADP + 2 P

outputs

 $4 CO_2$

6 NADH

2 FADH₂

Oxidative Phosphorylation

- So far... in glycolysis, prep, and Krebs, only a little ATP has been produced, but A LOT of NADH (and some FADH₂).
- NADH (and FADH₂) are carriers of high-energy e⁻'s.
 - Remember, e^{-'} s are passed as H⁻
- OxPhos is how the energy is finally harvested and ATP is generated.
- In the matrix of the mito, NADH (and FADH₂) pass their high-E e^{-¹} s to the e⁻ transport chain (ETC, proteins and cytochromes)
 - The ETC is embedded in INNER MEMBRANE (Cristae) of the mito for eukaryotes! (PM for Prokaryotes)

(Oxidative Phosphorylation, con't)

- The ETC then passes the e⁻'s along, using the E of the e⁻'s to pump H⁺ out of the matrix into the inter-membrane space.
- This is creates a <u>proton gradient</u> across the inner membrane
- Lastly, protons are allowed to flow back through the inner membrane, but only through a membrane channel (and enzyme) called <u>ATP synthase</u>
- ATP synthase is like a turbine! As protons flow through it (DOWN their concentration gradient), it turns a crank that generates ATP. This is called <u>chemiosmosis</u>.
- At the end of the ETC, the e-'s (no longer high E) are passed to O₂ to form H₂O. (This is b/c the e-'s are always passed as H⁻.)

Organization of Cristae

So, why is O_2 so important?

- ...because it is the final acceptor of e⁻'s
- (This creates a water molecule)
- If there is no oxygen around:
 - The ETC cannot pass e^{-'}s, so stops!
 - No ETC = No H⁺ pumping
 - No H+ gradient, ATP synthase stops. (no chemiosmosis)
- When ETC stops:
 - NADH (and FADH₂) cannot pass e^{-'} s to it.
 - NADH builds up (no NAD+ and FAD)
 - So Krebs stops too!
- Summary: No O₂ = no flow of e^{-'} s and everything stops!

Glucose Breakdown: Overview of 4 Phases

Final Summary

	Glycolysis	Prep	Krebs	OxPhos
Where?	Cytoplasm	Mitochondria	Mitochondria (Matrix)	Mitochondria (Cristae)
What goes in	1 glucose 2 ATP 2 NAD+	2 pyruvate 2 NAD+ 2 CoA	2 Acetyl-CoA 6 NAD+ 2 FADH+	10 NADH 2 FADH ₂ 6 O ₂
What comes out	2 pyruvate 4 ATP 2 NADH	2 Acetyl-CoA 2 NADH 2 CO ₂	4 CO ₂ 6 NADH 2 FADH ₂ 2 ATP	6 H ₂ O 32-34 ATP (10 NAD+) (2 FADH+)

Final Summary

The Hydrolysis of ATP....

- ...is very EXERGONIC (∆G = -7.3 kcal/mol)
- ...is easy to couple to other things!
- ...involves water!
- The crowding of negative charges is like a "loaded spring"
- Cellular respiration has overall VERY negative ∆G
 - Makes LOTS of ATP, drives all cellular work!

```
\Delta G = -7.3 kcal/mol ~ 507 g (ATP) - 38 ATP per molecule of sugar \Delta G = -686 kcal/mol ~ 180g (C_6H_{12}O_6)
```

Which is more Exergonic?
Where does the "lost" energy go?

Anaerobic Respiration = Fermentation

- When there is no O₂ around, cells can still use glycolysis to generate SOME ATP from glucose
- But, to keep glycolysis going, you must find a way to re-generate NAD+
 - Remember, O₂ is the final acceptor of e^{-'}s, so everything backs up w/o it.
- The answer is Fermentation. This occurs in cytoplasm.
- Two Types (both re-generate NAD+)
 - Alcoholic fermentation converts pyruvate to ethanol and CO2 (yeast)
 - Lactic acid fermentation " lactic acid (animals)

Efficiency of Fermentation

Fermentation

inputs

glucose

outputs

2 lactate or

2 alcohol and 2 CO₂

Fermentation (2)

- Pyruvate reduced by NADH to:
 - Lactate
 - Animals & some bacteria
 - Cheese & yogurt; sauerkraut
 - Ethanol & carbon dioxide
 - Yeasts
 - Bread and alcoholic beverages
- Allows glycolysis to proceed faster than O₂ can be obtained
 - Anaerobic exercise
 - Lactic acid accumulates
 - Causes cramping and oxygen debt
- When O₂ restored, lactate broken down to acetyl-CoA and metabolized
 ₅₅

Metabolic pool: The Versatility of Catabolism

- Catabolic pathways funnel electrons from many kinds of organic molecules into cellular respiration
- Glycolysis accepts a wide range of carbohydrates
- Proteins must be digested to amino acids; amino groups can feed glycolysis or the citric acid cycle
- Fats are digested to glycerol (used in glycolysis) and fatty acids (used in generating acetyl CoA)
- An oxidized gram of fat produces more than twice as much ATP as an oxidized gram of carbohydrate

Not just glucose!

Metabolic Pool: Anabolism

- All metabolic reactions part of metabolic pool
- Intermediates from respiratory pathways can be used for anabolism
- Anabolism (build-up side of metabolism):
 - Carbs:
 - Start with acetyl-CoA
 - Basically reverses glycolysis (but different pathway)
 - Fats
 - G3P converted to glycerol
 - Acetyls connected in pairs to form fatty acids

Metabolic Pool: Anabolism (2)

- Anabolism (cont.):
 - Proteins:
 - Made up of combinations of 20 different amino acids
 - Some amino acids (11) can be synthesized from respiratory intermediates
 - organic acids in citric acid cycle can make amino acids
 - Add NH₂ transamination
 - However, other amino acids (9) cannot be synthesized by humans
 - Essential amino acids
 - Must be present in diet or die

The Metabolic Pool Concept

