General Biology 1 BIO1101

Syllabus & Textbook: http://goo.gl/rvgdrH

Lecturer: Michael Gotesman, PhD

Email: mgotesman@citytech.cuny.edu

Numerical
Ranges
93-100
90-92.9
87-89.9
83-86.9
80-82.9
77-79.9
70-76.9
60-69.9
59.9 and below

OER

Lecture: https://openlab.citytech.cuny.edu/bio-oer/page/2/

Lab: https://openlab.citytech.cuny.edu/bio-oer/

Grade Breakdown:

Exams (4): 20% Each

Quizzes: 20% Average

Recap: Meeting 10

A. Cell Theory:

- 1) Basic component of life
- 2) All living things made of cells
- 3) Cells divide to make new cells

B. Basic of Cells - Cells interact with and respond to their environment

- 1) Plasma membrane phospholipid bilayer
- 2) Domains: Prokaryote vs Eukaryotes
- 3) Prokaryotes (bacteria & archea)
- 4) Eukaryotes Many Organelles

C. Eukaryotes

Protista –Single celled Eukaryotes Animal, Fungi, Plants – Multi celled

D. Endosymbiosis/Endosymbiotic Capture:

Mitochondria

Chloroplast

E. Multicellularity

https://www.coursera.org/learn/astrobiology/lecture/X6NMT/the-rise-of-multicellularity

THE EUKARYOTIC CELL

The Nucleus

- Surrounded by <u>double</u> lipid bilayer called <u>nuclear</u> <u>envelope</u>
- Usually the easiest organelle to see!
- Envelope has large pores, 100nm in diameter. The <u>nuclear pore complex</u> governs entry/exit from the nucleus.
- DNA is present in the nucleus in the form of <u>chromatin</u>, which is unwound chromosomes (made of DNA and protein)
- Nucleolus a dense region (not membrane bound)
 where rRNA is transcribed and ribosomes are made

Animal and Plant Cell Anatomy

The Nucleus

Ribosomes

- Perform all protein synthesis in the cell
- Composed of rRNA (made in nucleolus) and proteins
- Ribosomes are Non-membrane bound
- May be :
 - Free ribosomes in the cytoplasm, either singly or in groups, called polyribosomes
 - These make proteins that will be located in the cytosol, nucleus, mitochondria, etc.
 - On the endoplasmic reticulum (thereby making the ER "rough") rough endoplasmic reticulum (RER)
 - These make proteins that will be located in the ER, Golgi, Plasma Membrane, Lysosome, or secreted outside of the cell

Ribosomes – Not membrane bound

Ribosomes perform all protein synthesis in the cell

Function of ribosomes

Endomembrane System

- Series of intracellular membranes that compartmentalize the cell
- have same structure as PM, but different components "floating" in the lipid bilayer
- Restrict enzymatic reactions to specific compartments
- Consists of:
 - Nuclear envelope
 - Membranes of endoplasmic reticulum
 - Vacuole
 - Golgi apparatus
 - Vesicles (several types)
 - Transport materials between organelles of system

Endomembrane System:

The Endoplasmic Reticulum

 A system of membrane channels and saccules (flattened vesicles) continuous with the outer membrane of the nuclear envelope

Endomembrane System: The Endoplasmic Reticulum

- Rough ER: Studded with ribosomes on cytoplasmic side
 - Synthesizes, modifies and processes proteins destined for: the PM, secretion, or anywhere in endomembrane system (lumen OR membrane-bound)
 - Adds sugar to protein > Results in glycoproteins
 - So, the rough ER is the first-stop "shipping center" for many proteins
- Smooth ER: No ribosomes
 - Site of various synthetic processes
 - Synthesis of: Lipids, Steroid hormones, Carbohydrates
 - Detoxification (of drugs / poisons)
 - Calcium storage (in muscle cells)
 - Forms transport vesicles

Endomembrane System:

The Endoplasmic Reticulum

 A system of membrane channels and saccules (flattened vesicles) continuous with the outer membrane of the nuclear envelope

Endomembrane System: The Golgi Apparatus

- Consists of 3-20 flattened, curved saccules
- Resembles stack of hollow naan/pita
- Modifies proteins and lipids
 - Receives vesicles from ER on cis (or inner face)
 - Packages them in vesicles
 - Prepares for "shipment" in v Packages them in vesicles from trans (or outer face)
 - Within cell
 - Export from cell (secretion, exocytosis)

Endomembrane System: The Golgi Apparatus

Endomembrane System:

Lysosomes

- The "stomach" of the cell (not in plants)
- Membrane-bound vesicles
 - Produced by the Golgi apparatus
 - Contain powerful hydrolytic (digestive) enzymes and are highly acidic
 - Digestion of large molecules
 - Recycling of cellular resources
 - Apoptosis (programmed cell death, like tadpole losing tail)
- Some genetic diseases
 - Caused by defect in lysosomal enzyme
 - Lysosomal storage diseases (Tay-Sachs)

Endomembrane System: Lysosomes

- a. Mitochondrion and a peroxisome in a lysosome
- b. Storage bodies in a cell with defective lysosomes

Endomembrane System:

Lysosomes

- pH = 5, Very acidic, like the stomach!
 - Acid helps break macromolecules down to monomers
 - Hydrolytic enzymes only work at low pH!
 - Thus, they will not be active until they reach the lysosome!
 - Also, protects the cell in case the lysosome leaks!
- Everything in the Lysosome came from the Golgi via vesicles
 - And from the rough ER before that!

Endomembrane System: Summary

- Proteins produced in rough ER and <u>lipids</u> from smooth ER are carried in vesicles to the Golgi apparatus.
- The Golgi apparatus modifies these products and then sorts and packages them into vesicles that go to various cell destinations.
- Secretory vesicles carry products to the membrane where exocytosis produces secretions.
- Lysosomes fuse with incoming vesicles and digest macromolecules.

Endomembrane System: A Visual Summary

Peroxisomes

- Similar to lysosomes
 - Membrane-bounded vesicles
 - Enclose enzymes
- However
 - Enzymes synthesized by free ribosomes in cytoplasm (instead of ER)
 - Active in lipid metabolism
 - Catalyze reactions that produce hydrogen peroxide H₂O₂
 - Toxic
 - Broken down to water & O₂ by catalase

Peroxisomes

Vacuoles

- Membranous sacs that are larger than vesicles
 - Store materials that occur in excess
 - Others very specialized (contractile vacuole)
- Plants cells typically have a central vacuole
 - Up to 90% volume of some cells
 - Functions in:
 - Storage of water, nutrients, pigments, and waste products
 - Development of turgor pressure
 - Some functions performed by lysosomes in other eukaryotes

Vacuoles

Other Membrane-bound organelles: Mitochondria and chloroplasts

- The two energy organelles
- Mitochondria are the "power stations" of the cell
 - All <u>cellular respiration</u> takes place here
 - Harvests energy from sugars and fats
 - All Eukaryotic cells have mitochondria
- Chloroplasts harvest solar energy
 - synthesize glucose from carbon dioxide and water (photosynthesis)
 - Only found in plants and some algae
- Both organelles are semi-autonomous
 - have SOME of their own DNA, have their own ribosomes
 - replicate independently of the rest of the cell

Energy-Related Organelles Mitochondria

- Smaller than chloroplast
- Surrounded by a double membrane
 - Inner membrane surrounds the matrix and is convoluted (folds) to form cristae.
 - Matrix Inner semifluid containing respiratory enzymes
 - Break down carbohydrates
- Involved in cellular respiration
- Produce most of ATP utilized by the cell

Mitochondrial Structure

Structure to know

Energy-Related Organelle Chloroplasts

- Plastid
- Bound by a double membrane organized into flattened disc-like sacs called thylakoids
- Chlorophyll and other pigments capture solar energy
- Enzymes synthesize carbohydrates
- Plastid: Organelle of plants and algae bounded by a double membrane and containing internal membranes or vesicles

Chloroplast Structure

Structure to know

Acquisition of Organelles

A model for the origin of Eukaryotes through serial endosymbiosis

The Cytoskeleton

- Maintains cell shape
- Assists in movement of cell and organelles
- Three types of macromolecular fibers
 - Microtubules
 - Actin Filaments (microfilaments)
 - Intermediate Filaments
- Assemble and disassemble as needed

The Cytoskeleton Actin Filaments

- Extremely thin filaments like twisted pearl necklace
- Dense web just under plasma membrane maintains cell shape
- Support for microvilli in intestinal cells
- Intracellular traffic control
 - For moving stuff around within cell
 - Cytoplasmic streaming
- Function in pseudopods of amoeboid cells
- Pinch mother cell in two after animal mitosis
- Important component in muscle contraction (other is myosin)

The Cytoskeleton: Intermediate Filaments

- Intermediate in size between actin filaments and microtubules
- Rope-like assembly of fibrous polypeptides
- Vary in nature
 - From tissue to tissue
 - From time to time
- Functions:
 - Support nuclear envelope
 - Cell-cell junctions, like those holding skin cells tightly together

The Cytoskeleton

Microtubules

- Fat, spiral, hollow tubes
- Polymer of **tubulin** proteins (α and β)
- Functions:
 - Chromosome Segregation (in mitosis)
 - Movement of organelles and vesicles
 - Provide structure to flagella / cilia
 - Motility
- Often organized at a central structure called the "centrosome"
 - Animal centrosomes contain two centrioles (aid cell division)

The Cytoskeleton

Centrioles

- Short, hollow cylinders
 - Composed of 27 microtubules
 - Microtubules arranged into 9 overlapping triplets
- One pair per animal cell
 - Located in centrosome of animal cells
 - Oriented at right angles to each other
 - Separate during mitosis to determine plane of division
- May give rise to basal bodies of cilia and flagella

one centrosome: one pair of centrioles

Flagella and Cilia

- In eukaryotic cells, these are made of microtubules (MTs) with outer covering of plasma membrane
- The 9+2 arrangement:
- 9 doublets of MTs in a circle around two central single tubules
- Anchored in the cell to a <u>basal body</u>
- Cilia are smaller and usually exist in larger numbers; move in coordinated waves like oars
- Flagella are long and cells usually have just one or two; Flagella move like a propeller or cork screw

Review Questions

- What is a centriole? A centrosome?
- Which organelle has a lumen with low pH? Why?
- What organelle performs cellular respiration?
- Circle the organelles that WOULD be found in a prokaryote:
 - Nucleus, Golgi, ribosome, Chloroplast, Plasma membrane
- What organelles performs detox. of drugs/poisons?
- Circle the organelles that are part of the Endomembrane system:
 - Lysosome, chloroplast, Golgi apparatus, vacuole, Endoplasmic Reticulum, Mitochondria
- What organelles synthesize proteins?
- What are the building block proteins of:
 - Microtubules, actin filaments, intermediate filaments