General Biology 1 BIO1101 Syllabus & Textbook: <u>http://goo.gl/rvgdrH</u>

Lecturer: Michael Gotesman, PhD Email: mgotesman@citytech.cuny.edu

Letter Grade	Numerical
	Ranges
Α	93-100
A-	90-92.9
B+	87-89.9
В	83-86.9
B-	80-82.9
C+	77-79.9
С	70-76.9
D	60-69.9
F	59.9 and below

<u> 0ER</u>

Lecture:<u>https://openlab.citytech.cuny.edu/bio-oer/page/2/</u> Lab: <u>https://openlab.citytech.cuny.edu/bio-oer/</u>

Grade Breakdown:

Exams (4): 20% Each Quizzes: 20% Average

Recap: Meeting 9

A. Proteins

- 1) Amino acids: amino terminal NH₂ carboxyl CO₂H R-variable
- 2) R can cause \rightarrow Hydrophobic, Hydrophilic, Polar, Acid/Base
- 3) Polymers extend via condensation peptide bonds => Proteins are also known as (aka) polypeptides
- 4) Structural vs Enzymatic vs Functional

B. Protein Structure

Primary (1°) – Sequence of AA Secondary (2°) – alpha helix vs beta sheets Tertiary (3°) – overall structure Quaternary (4°) – interaction with 2 or more proteins

C. Nucleosides vs Nucleotides:

Components: Penotose (Ribose), base (A, C, G, T/U), phosphate group DNA/RNA – similarities and differences Complimentary base pairing DNA double helix – James Watson and Francis Crick

Amino Acids

- 20 that commonly appear in nature
- Each has an amino group, a carboxyl group, and a unique side chain
 - At neutral pH, both the amino group and carboxyl group are ionized!
- The Sequence of amino acids in a protein dictates shape, function, etc.

Levels of Protein Structure

Primary (1°) Structure – the amino acid sequence Example: Met-gly-ser-tyr-trp-ser-val-Ile-Phe-Arg-Asn... Everything else depends on this!

Levels of Protein Structure Secondary (2°) Structure – the folding of the polypeptide chain into helices and sheets Called alpha-helix and beta-sheet

Secondary Structure

Hydrogen bonding between amino acids causes the polypeptide to form an alpha helix or a pleated sheet.

Anti-freeze protein

β Sheets provide rigid structure

Levels of Protein Structure

Tertiary (3°) Structure – The complex final overall shape that a polypeptide takes

H-bonding, disulfide bridges, hydrophobic interactions, ionic bonds, van der Waals, etc.

Levels of Protein Structure Quaternary (4°) Structure – Interaction of multiple polypeptides to form one functional protein

Example: Hemoglobin, collagen, keratin

Nucleosides

- Three parts to a nucleoside:
 Five-carbon sugar
 - Nitrogenous base ([DNA] A, C, G, T, or [RNA] U)
- 1,2, or 3 phosphate groups (NTP Nucleotide Tri Phosphate)
 There are two families of nitrogenous bases:
 - Pyrimidines have a single six-membered ring (C,T)

 Purines have a six-membered ring fused to a fivemembered ring (A,G)

- In DNA, the sugar is deoxyribose
- In RNA, the sugar is ribose

Elongation: 5' → 3' (phospho<u>di</u>ester linkage) Each phosphodiester bond holds two DNA/RNA molecules together

RNA

Single stranded
A, <u>U</u>, G, C (no T)
Sugar: pentose/ribose

Name:Quiz 410/02/16Q1 (10 points):Do molecules polymerize/elongate by hydrolysis orcondensation?

Q2 (30 points): name the monomeric subunit for each polymer (Full name for full credit):

A: Carbohydrate are poly...: B: Protein: C: DNA/RNA:

Q3 (20 points): Name 2 polymers that plants or animals use for structure

Q4 (20 points): Name and draw out the terminal regions (ends) of the protein subunit (2 different ends):

1) One end is <u>a) called and has this <u>b) chemical make up</u>:</u>

2) The other end is <u>a) called and has this <u>b) chemical make up</u>:</u>

Q5 (20 points): Describe 2 differences between DNA and RNA
1) DNA is... and RNA is.... 2) DNA is... and RNA is....

Bio 1101-Lecture 10

The Cell

An overview of the cell

- The fundamental Unit of Life
- Cells interact with and respond to their environment
- All organisms are made of cells
- All cells come from other cells
- Throughout biology, cells are incredibly diverse and highly specialized

Size range of cells

- Most prokaryotes (bacteria) = 1-10μm
- Most eukaryotes = 10-100μm
- Regular light or fluorescent microscope can only resolve down to 0.2 μm
- Electron Microscope needed to see most cell organelles

Microscopy and Amoeba proteus

200 nm

500 µm

amoeba, scanning electron micrograph

c. Scanning electron microscope

amoeba, light micrograph

a. Compound light microscope

pseudopod segment, transmission electron micrograph

b. Transmission electron microscope

Types of Cells

- Prokaryotic and Eukaryotic
 - Both have P.M. (plasma membrane) (lipid bilayer)
 - Both have cytosol (semifluid gel)
 - Both have chromosomes made of DNA, containing genes
 - Both have ribosomes for protein synthesis
- Eukaryotes also have:
 - Membrane-bound nucleus containing DNA
 - Other membrane-bound organelles:
 - Endoplasmic Reticulum, Golgi, mitochondria

Types of Cells

5 µm

Prokaryotes

- Only Bacteria and Archaea are Prokaryotes
- These small cells do have organelles (just not membranebound ones!)
 - All have P.M. and ribosomes
 - May have cell wall, flagella, cilia, pili

Shapes of Bacterial Cells

a. Spirillum: Spirillum volutans SEM 3,520 \times

SEM 35,000×

c. Cocci: Streptococcus thermophilus

SEM 6,250×

Prokaryotic Cell

Sex pilus: elongated, hollow appendage used for DNA transfer to other bacterial cells

Fimbriae: ______ hairlike bristles that allow adhesion to the surfaces

Flagellum: rotating filament present in some bacteria that pushes the cell forward Inclusion body: stored nutrients for later use

Mesosome: _____ plasma membrane that folds into the cytoplasm and increases surface area

Nucleoid: ______ location of the bacterial chromosome

Plasma membrane: sheath around cytoplasm that regulates entrance and exit of molecules

Cell wall: covering that supports, shapes, and protects cell

Glycocalyx: gel-like coating outside cell wall; if compact, called a capsule; if diffuse, called a slime layer

Prokaryotic Cells: The Envelope

- Cell Envelopes
 - Glycocalyx
 - Layer of polysaccharides outside cell wall
 - May be slimy and easily removed, or
 - Well organized and resistant to removal (capsule)
 - Cell wall Polysaccharide
 - Plasma membrane
 - Like in eukaryotes
 - Form internal pouches (mesosomes)

Prokaryotic Cells: Cytoplasm & Appendages

Cytoplasm

- Semifluid solution
 - Bounded by plasma membrane
 - Contains inclusion bodies Stored granules of various substances

Appendages

- Flagella Provide motility
- Fimbriae small, bristle-like fibers that sprout from the cell surface
- Sex pili rigid tubular structures used to pass DNA from
- ²³ cell to cell

Eukaryotes: many organelles

- All Protists, Fungi, Animal, and Plant cells
- Keep chromosomes in a double-membrane nucleus
- Everything inside the P.M., but outside nucleus is the cytoplasm (cytosol + other organelles)
- All internal membranes are lipid bilayers (just like the P.M.)
- Membrane-bound organelles:
 - E.R., Golgi, Lysosomes, Mitochondria, Nucleus, Chloroplasts, Vacuoles, Peroxisomes,
- Non-membrane bound organelles:
 - Ribsomes, Cytoskeleton, Centrosome, Flagellum, Cilia, Cell Wall, Cell Junctions

Protista are not prokaryotes

The Plasma Membrane

protein molecules

phospholipid bilayer

has various functions; breaks down fatty acids and converts resulting hydrogen peroxide to water

> Golgi apparatus: processes, packages, and secretes modified cell products

> > Cytoplasm: semifluid matrix outside nucleus that contains organelles

*not in animal cells

supports, and protects cell

cell and organelles

Plasma membrane: surrounds

and exit of molecules

thylakoids in a chloroplast

Cell wall*: outer surface that shapes,

Granum*: a stack of chlorophyll-containing

cytoplasm, and regulates entrance

Prokaryotic and Eukaryotic

TABLE 4.1

Comparison of Prokaryotic Cells and Eukaryotic Cells

	Prokaryotic Cells	Euka	ryotic Cells
		Animal	Plant
Size	Smaller (1–20 μm in diameter)	ן 10–100 µ	.arger ım in diameter)
Cell wall	Usually (peptidoglycan)	No	Yes (cellulose)
Plasma membrane	Yes	Yes	Yes
Nucleus	No	Yes	Yes
Nucleolus	No	Yes	Yes
Ribosomes	Yes (smaller)	Yes	Yes
Endoplasmic reticulum	No	Yes	Yes
Golgi apparatus	No	Yes	Yes
Lysosomes	No	Yes	No
Mitochondria	No	Yes	Yes
Chloroplasts	No	No	Yes
Peroxisomes	No	Usually	Usually
Cytoskeleton	No	Yes	Yes
Centrioles	No	Yes	No
9 + 2 cilia or flagella	No	Often	No (in flowering plants) Yes (sperm of bryophytes, ferns, a

Origin of the First Cell(s)

The emergence of Eukaryotes the Endomembranes

- As the prokaryotes were growing larger, infoldings of the plasma membrane developed (probably as a site for electron transport and H⁺ pumping/gradients)
- These infoldings separated from the plasma membrane entirely and gave rise to the **Endoplasmic Reticulum**
- Parts of the ER could then develop into the Golgi, lysosomes, and the nuclear envelope
- The packaging of the DNA inside the nuclear envelope protected it from damage by cytosolic chemical reactions

The emergence of Eukaryotes – the Endomembranes

The emergence of Eukaryotes the mitochondrion

- After O₂ appeared, prokaryotes that were able to utilize O₂ as an e⁻ acceptor quickly evolved
- At one point, a smaller aerobe was engulfed by (or was a parasite of) a larger <u>an</u>aerobe
- The relationship turned into a mutually beneficial <u>symbiosis</u>
- To this day, mito replicate independently and have some of their own DNA, tRNA, ribosomes, proteins, etc.

The emergence of Eukarytotes – the mitochondrion

A model for the origin of Eukaryotes through serial endosymbiosis

The emergence of Eukaryotes the chloroplast

- At first, the buildup of O₂ in the oceans was very slow. Then it increased very suddenly causing the Oxygen Revolution:
 - This was probably caused by the incorporation of one photosynthetic prokaryote inside another prokaryote...
 thereby evolving into...
 - THE CHLOROPLAST!!! An organelle totally dedicated to photosynthesis, generates *lots* of O₂
- Chloroplasts, like mito, replicate independently and have some of their own DNA, RNA, ribosomes

The emergence of Eukaryotes – the chloroplast

A model for the origin of Eukaryotes through serial endosymbiosis

Acquisition of Organelles

A model for the origin of Eukaryotes through serial endosymbiosis

Multicellularity

- A single cell is the common ancestor of all Eukaryotes, but not all Eukaryotes are multicellular
- Therefore, Scientists believe that multicellularity must have evolved multiple separate times.
 - Once for animals, once for plants, once for fungi, once for algae, etc.

A colonial Eukaryote

Eukaryote Evolution

– About 1.8 bya

- Most aerobic
- Contains nucleus as well as other membranous organelles

Endosymbiotic Hypothesis

- Mitochondria were probably once free-living aerobic prokaryotes.
- Chloroplasts were probably once free-living photosynthetic prokaryotes.
- A nucleated cell probably engulfed these prokaryotes that became various organelles.
- Multicellularity arises (about 1.4 bya)

Paleozoic and Precambrian Time Eras

TABLE 18.1

The Geologic Timescale: Major Divisions of Geologic Time and Some of the Major Evolutionary Events of Each Time Period

			Mass Extinction	* 1
	Permian	(299–251)	Gymnosperms diversify.	Reptiles diversify; amphibians decline.
	Carboniferous	(359.2–299)	Age of great coal-forming forests; ferns, club mosses, and horsetails flourish.	Amphibians diversify; first reptiles appear; first great radiation of insects.
			Mass Extinction	Vie
Paleozoic	Devonian	(416-359.2)	First seed plants appear. Seedless vascular plants diversify.	First insects and first amphibians appear on land.
	Silurian	(443.7–416)	Seedless vascular plants appear.	Jawed fishes diversify and dominate the seas.
			Mass Extinction	
	Ordovician	(488.3–443.7)	Nonvascular land plants appear on land.	First jawless and then jawed fishes appear.
	Cambrian	(542–488.3)	Marine algae flourish.	All invertebrate phyla present; first chordates
		630	Soft-bodied invertebrates	uppean.
		1,000	Protists diversify.	
Precambrian Time	Fime	2,100	First eukaryotic cells	11/1/1/1
		2,700	O ₂ accumulates in atmosphere.	200
		3,500	First prokaryotic cells	
		4,570	Earth forms.	

Cenozoic and Mesozoic Eras

TABLE 18.1

The Geologic Timescale: Major Divisions of Geologic Time and Some of the Major Evolutionary Events of Each Time Period

Era	Period	Epoch	Millions of Years Ago (мүѧ)	Plant Life	Animal Life
		Holocene	(0.01–0)	Human influence on plant life	Age of Homo sapiens
				Significant Mammalian Extinction	
	Quaternary	Pleistocene	(1.80–0.01)	Herbaceous plants spread and diversify.	Presence of Ice Age mammals. Modern humans appear.
		Pliocene	(5.33–1.80)	Herbaceous angiosperms flourish.	First hominids appear.
		Miocene	(23.03–5.33)	Grasslands spread as forests contract.	Apelike mammals and grazing T and grazing T
Cenozoic*		Oligocene	(33. 9 –23.03)	Many modern families of flowering plants evolve.	Browsing mammals and monkeylike primates appear.
	Tertiary	Eocene	(55.8–33.9)	Subtropical forests with heavy rainfall thrive.	All modern orders of mammals are represented.
		Paleocene	(65.5–55.8)	Flowering plants continue to diversify.	Primitive primates, herbivores, carnivores, and insectivores appear.
				Mass Extinction: Dinosaurs and Most Rej	otiles
	Cretaceous		(145.5–65.5)	Flowering plants spread; conifers yersist.	Placental mammals appear; modern insect groups appear.
Mesozoic	Jurassic		(199.6–145.5)	Flowering plants appear.	Dinosaurs flourish; birds appear.
				Mass Extinction	All Contractions
	Triassic		(251–199.6)	Forests of conifers and cycads dominate.	First mammals appear; first dinosaurs appear; corals and molluscs dominate seas.