General Biology 1 BIO1101 Syllabus & Textbook: <u>http://goo.gl/rvgdrH</u>

Lecturer: Michael Gotesman, PhD Email: mgotesman@citytech.cuny.edu

Letter Grade	Numerical	
	Ranges	
Α	93-100	
A-	90-92.9	
B+	87-89.9	
В	83-86.9	
B-	80-82.9	
C+	77-79.9	
С	70-76.9	
D	60-69.9	
F	59.9 and below	

<u> 0ER</u>

Lecture:<u>https://openlab.citytech.cuny.edu/bio-oer/page/2/</u> Lab: <u>https://openlab.citytech.cuny.edu/bio-oer/</u>

Grade Breakdown:

Exams (4): 20% Each Quizzes: 20% Average

Recap: Lecture 8

A. Polymerization: Monomers → Polymers

- 1) Dehydration synthesis or condensation reaction \rightarrow H₂O released
- 2) Hydrolysis Splitting by water \leftarrow H₂O absorbed
- **B.** Carbohydrates $C_6 H_{12} O_6 \rightarrow Glycosidic Linkage \rightarrow Polymers$
- 1) Linear vs Ring [aqueous]
- 2) Monosaccharide (glucose) \rightarrow Polysaccharides (Chitin, Glycogen)
- 3) Triose = 3 C's \rightarrow (Glycerol) Fats
- 4) Hexose = 6 C's → Energy Storage -Starch: A)amylose, B)amylopectin Glycogen -- animals)

vs Structural (Peptidyglocan -- bacteria, Cellulose -- plants Chitin -- exoskeleton)

4) Pentose = 5 C's \rightarrow Ribose???

C. Lipid: Unifying feature having little or no solubility in water

1) Triglycerides: Glycerols (3C alcohol) fuse with

3 fatty acids (carboxylic acid, 16 or 18 C's) Saturated vs unsaturated

2) Phospholipids: Glycerols fuse with 2 fatty acids AND Phosphate head

3) Sterols (Cholesterol main precursor in animals) Estrogen, Progesterone, Testosterone, Cortisol (hydrocortizone) Bio 1101-Lecture 9

Macromolecules II

Proteins

- The most diverse Macromolecule
- 50% of the dry weight of cells
- Polypeptide is a polymer of amino acids
- A protein is a polypeptide (or more than one) folded into a functional conformation.
 (Conformation = shape. Shape = function!)

Amino Acids

- 20 that commonly appear in nature
- Each has an amino group, a carboxyl group, and a unique side chain
 - At neutral pH, both the amino group and carboxyl group are ionized!
- The Sequence of amino acids in a protein dictates shape, function, etc.

What elements are the components of aa?

Amino Acids

- Three general categories of side chains
 - Non polar (hydrophobic)
 - Polar (hydrophilic)
 - Charged (either acid or basic)
- A certain region of a protein has a certain characteristic (e.g., hydrophobic) because the amino acid side chains have that characteristic

Nonpolar amino acids

Polar Amino Acids

Electrically Charged Amino Acids

Peptide bond formation

Amino acids are held together by peptide bonds

- Once again, dehydration
 (condensation) reaction
- New amino acids are added onto the Carboxyl group "C- terminal" of the growing chain.
- Thus, a protein begins with an amino group "Nterminal" and ends with a carboxyl group "Cterminal"

Functions of Proteins

- By far, most are ENZYMES Help "catalyze" chemical reactions Structural Proteins Give support, strength, flexibility Examples: collagen, elastin, keratin Storage Proteins Storage of amino acids, for building proteins later or energy Examples: egg albumin (ovalbumin), Casein
 - (in milk)

Functions of Proteins, con't

- Transport Proteins
 - Examples: Hemoglobin (O₂), H⁺ pump
- Hormonal Proteins and receptor proteins
 - Example: Insulin and Insulin receptor
- Contraction and Motor Proteins
 - Actin and myosin perform muscle contraction
- Immune Defense Proteins
 - Antibodies help fight infection

- Biological "<u>catalyst</u>" = Facilitate chemical reactions, without being a product or reactant. Enzymes are named for what they do! E.g. Sucrase
- Not CONSUMED in the process. (Recycled)
- Examples: digestive enzymes

Enzymes

- In a chemical reaction, enzymes bring all the products and co-factors together in the "active site" of the enzyme to make the reaction happen.
- Once again, it is all about SHAPE!

Levels of Protein Structure

- Primary (1°) Structure the amino acid sequence
 - Example: Met-gly-ser-tyr-trp-ser-val-lle-Phe-Arg-Asn...
 - Everything else depends on this!

Levels of Protein Structure

Secondary (2°) Structure – the folding of the polypeptide chain into helices and sheets
 Called <u>alpha-helix</u> and <u>beta-sheet</u>

Secondary Structure

Hydrogen bonding between amino acids causes the polypeptide to form an alpha helix or a pleated sheet. Levels of Protein Structure
 Tertiary (3°) Structure – The complex final overall shape that a polypeptide takes
 H-bonding, disulfide bridges, hydrophobic interactions, ionic bonds, van der Waals, etc.

Levels of Protein Structure
 Quaternary (4°) Structure – Interaction of multiple polypeptides to form one functional protein
 Example: Hemoglobin, collagen, keratin

Structure of Proteins (Important Fig!)

Structure of Proteins

Protein Folding

When a protein encounters extreme conditions, it may unfold or **"denature**"

- Extreme temperature, pH, salt concentration, organic solvents
- A denatured protein has no shape, thus no activity
- Sometimes it is reversible, sometimes not.

Nucleic Acids

- Named because they are acids found in the nucleus!
- Two types: DNA, RNA (Deoxyribonucleic acid, ribonucleic acid)
- DNA is the *repository* of genetic information
- RNA is the expression of genetic information

Nucleosides

- Three parts to a nucleoside:
 Five-carbon sugar
 Nitrogenous base (A, C, G, T, or [RNA] U)
 1,2, or 3 phosphate groups (NTP Nucleotide Tri Phosphate)
- There are two families of nitrogenous bases:
 Pyrimidines have a single six-membered ring (C,T)
 Purines have a six-membered ring fused to a five-membered ring (A,G)
- In DNA, the sugar is deoxyribose
 In RNA, the sugar is ribose

Nucleotides

U

H

uracil in RNA

CH

HC

adenine

CH

N H

thymine in DNA

G

N

guanine

H₂N

CH

CH

H

c. Pyrimidines versus purines

CH

cytosine

n

Nucleic Acids

Both RNA and DNA are polymers of Nucleotides

- The information is stored in the sequence of the nucleotides.
- Once again, a dehydration/condensation reaction!!!

Genes are made of DNA. Much of this DNA codes for proteins. RNA transfers the code from DNA to protein.

Central Dogma of Molecular Biology:

 $DNA \rightarrow RNA \rightarrow protein$

Summary of Gene Expression

RNA

Single stranded A, <u>U</u>, G, C (no T) Sugar: ribose

DNA double helix (1953) – James Watson and Francis Crick

- Two polymers (strands) line up, then form a double helix (twisted ladder)
- The sides of the ladder are the sugars and the phosphate groups
- The "rungs" of the ladder are the Nitrogen bases
- The bases hydrogen bond to each other in a specific way called "base pairing"

Base-pairing

- A and T form two H-bonds
- G and C form three H-bonds
- A "complimentary" DNA
 sequence is the sequence on the OTHER strand of a DNA
 molecule
- Example... -A-C-C-G-T-G-A Answer... -T-G-G-C-A-C-T-

ATP

ATP (adenosine triphosphate) is composed of adenine, ribose, and three phosphates
In cells, one phosphate bond is hydrolyzed – Yields:
The molecule ADP (adenosine diphosphate)
An inorganic phosphate molecule p_i
Energy used for work in the cell

Comparison of DNA & RNA

Feature	DNA	RNA	
Sugar	Deoxyribose	Ribose	
Bases	Cytosine, guanine; adenine, <i>thymine</i>	Cytosine, guanine; adenine, <i>uracil</i>	
Strands	Double-stranded; Pairing across strands	Mostly single stranded	
Helix	Yes	No	
Function	Heredity; cellular control center	Interprets genetic info; protein synthesis	
Where	Chromosomes of cell nucleus	Cell nucleus and cytoplasm	

Questions?

https://youtu.be/o_-6JXLYS-k

Biological Macromolecules

	Examples	Functions	Monomer (building block)
Carbohydrates	(Hexose) Starch, glycogen (polysaccharides)	Energy storage, cell surface marker, cell signaling	Simple sugars (glucose, galactose)
Proteins	Hemoglobin, Enzymes, Collagen	Catalyze reactions, physical structure, cell signaling	Amino Acids (glycine, cysteine)
Nucleic Acids	(Pentose, Ribose) DNA, RNA	Store Genetic Information, Gene expression	Nucleotides (A,C,G,T)
Lipids	(Triose) Triacylglycerol, cholesterol	Energy Storage, Cell Membranes, Hormones	Fatty Acids and Glycerol

Review Questions

- What is the monomer of Proteins?
- What are the three parts of a nucleotide?
- α -helix is an example of what level of protein structure?
- Why is polymerization of monosaccharides or amino acids called "dehydration synthesis?"
- What type of lipid is used to construct the cell membrane?
- What is an enzyme?
- Name the "linkage" between two...
 - Amino acids, monosaccharides
- What are plant cell walls made of?
- Adenine (A) hydrogen-bonds with which nucleotide?
- What does it mean if a fat is "unsaturated?"

TABLE 3.5

Organic Compounds in Cells

	Categories	Elements	Examples	Functions
Carbohydrates	Monosaccharides 6-carbon sugar 5-carbon sugar	C, H, O	Glucose Deoxyribose, ribose	Immediate energy source Structure of DNA, RNA
	Disaccharides 12-carbon sugar	С, Н, О	Sucrose	Transport sugar in plants
	Polysaccharides Polymer of glucose	C, H, O	Starch, glycogen Cellulose	Energy storage in plants, animals Plant cell wall structure
Lipids	Triglycerides I glycerol + 3 fatty acids	С, Н, О	Fats, oils	Long-term energy storage
	Phospholipids Like triglyceride except the head group contains phosphate	C, H, O, P	Lecithin	Plasma membrane component
	Steroids Backbone of 4 fused rings	С, Н, О	Cholesterol Testosterone, estrogen	Plasma membrane component Sex hormones
	Waxes Fatty acid + alcohol	С, Н, О	Cuticle Earwax	Protective covering in plants Protective wax in ears
Proteins	Polypeptides Polymer of amino acids	C, H, O, N, S	Enzymes Myosin and actin Insulin Hemoglobin Collagen	Speed cellular reactions Muscle cell components Regulates sugar content of blood Oxygen carrier in blood Fibrous support of body parts
Nucleic Acids	Nucleic acids Polymer of nucleotides Nucleotides	C, H, O, N, P	DNA RNA ATP Coenzymes	Genetic material Protein synthesis Energy carrier Assist enzymes