#### General Biology 1 BIO1101

Syllabus & Textbook: <a href="http://goo.gl/rvgdrH">http://goo.gl/rvgdrH</a>

Lecturer: Michael Gotesman, PhD

Email: mgotesman@citytech.cuny.edu

| Numerical      |  |
|----------------|--|
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
| 59.9 and below |  |
| _              |  |

#### **OER**

Lecture: https://openlab.citytech.cuny.edu/bio-oer/page/2/

Lab: <a href="https://openlab.citytech.cuny.edu/bio-oer/">https://openlab.citytech.cuny.edu/bio-oer/</a>

#### **Grade Breakdown:**

Exams (4): 20% Each

Quizzes: 20% Average

## Macromolecules



### Macromolecules

- Life's Large molecules
- Four types of Biological macromolecules:
  - Carbohydrates
  - Lipids
  - Proteins
  - Nucleic Acids
- Most are Polymers long molecules that are repeating units of smaller building blocks (monomers)

#### **Polymerization**

- Polymer a long molecule made of many small, similar, repeating units connected in a chain by covalent bonds
- Monomer the small building blocks of a polymer
- Polymerization the process of linking monomers to form a polymer.
- Polymerization is a chemical reaction catalyzed by enzymes

#### Role of water in polymerization

- The linkage of monomers involves a water molecule!
- When a polymer is built by linking monomers together:
  - a new water molecule is CREATED!

called a Dehydration synthesis, or condensation

reaction



#### Role of water in polymerization

- When a polymer is BROKEN DOWN, releasing monomers:
  - A water molecule is consumed (hydrolysis)



## Carbohydrates

- Carbohydrates serve as fuel and building material
- Carbohydrates include sugars and the polymers of sugars
- The simplest carbohydrates are monosaccharides = single sugars
- Carbohydrate macromolecules are polysaccharides = polymers composed of many sugar building blocks

#### Monosaccharides

#### Monosaccharide

- = simple sugar.
  - Ribose\*,
  - Glucose,
  - Galactose,
  - Fructose
- $\blacksquare$  Triose = 3 C's
- \*Pentose = 5 C's
- Hexose = 6 C's
- Ketose (ketone)
- Aldose (aldehyde)



#### Linear form vs. ring form

The linear form is convenient for drawing, but in aqueous solutions, sugars exist in a ring form.



(a) Linear and ring forms

anomerization

(b) Abbreviated ring structure

#### **Disaccharides**

- A disaccharide is formed when a dehydration reaction joins two monosaccharides
- This covalent bond is called a glycosidic linkage

- Some Important disaccharides:
  - Maltose: 1 glucose + 1 glucose
  - Sucrose: 1 glucose + 1 fructose
  - Lactose: 1 glucose + 1 galactose

#### **Disaccharides**

Disaccharides are two monosaccharides joined by a

glycosidic linkage (via dehydration)

(a) Dehydration reaction in the synthesis of maltose



(b) Dehydration reaction in the synthesis of sucrose



#### What is a tri-saccharide?

#### Polysaccharides

- Polysaccharides are long polymers of sugars
- Usually for one of two possible purposes:
  - Energy storage polysaccharides (starch, glycogen)
  - Structural polysaccharides (cellulose, peptidoglycan, chitin)
  - Cellulose Plant structural polymer for cell wall
  - Peptidoglycan is a polymer that makes up the cell wall of all bacteria.
  - Chitin: fungal cell wall and the exoskeletons of arthropods such as insects and crustaceans (e.g. crabs, lobsters and shrimps).

#### Polysaccharides to know

- Starch plant storage of glucose
  - two forms: amylose and amylopectin
  - This is easily digested by all animals.



#### Polysaccharides to know

- Glycogen animal storage of glucose (humans: liver and muscle)
- Also polymer of glucose, but much more branched



#### Polysaccharides to know, cont.

- Cellulose Plant structural polymer for cell wall
  - Polymers of glucose but NOT helical, NOT branched
  - NOT digestible by animals!



### Polysaccharides to know, cont.

- Chitin Structure for Insect exoskeleton and fungal cell wall
  - Polymers of a Nitrogen-containing form of glucose



(a) The structure of chitin.



**(b)** Chitin forms the exoskeleton of arthropods. This cicada is molting, shedding its old exoskeleton and emerging in adult form.



(c) Chitin is used to make a strong and flexible surgical thread that decomposes after the wound or incision heals.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

## Lipids

- Not technically polymers, but still large molecules
- The unifying feature of lipids is having little or no solubility in water (hydrophobic)
  - consist mostly of hydrocarbons, which form nonpolar covalent bonds
- Three important types:
  - Fats, Phospholipids, Steroids (aka sterols)

## Fats (triglycerides)

Group also includes waxes and oils

3 fatty acids

- Made of 1 glycerol and 3 fatty acids (triacylglycerol)
  - Glycerol = 3-carbon alcohol (3-OH's) Triol
  - Fatty Acid:
    - Long-chain carboxylic acid, usually 16 or 18 C's
    - mostly hydrocarbon units (high energy storage)



a. Formation of a fat

glycerol

fat molecule

3 water molecules

# Fats (triglycerides)

- Made of 1 glycerol and 3 fatty acids (triacylglycerol)
  - Glycerol = 3-carbon alcohol (3-OH's)
  - Fatty Acid:
    - Long-chain carboxylic acid, usually 16 or 18 C's
    - mostly hydrocarbon units (high energy storage)





saturated fat

c. Types of fats

#### Saturated vs Unsaturated

- Saturated Fats means all carbons are saturated with hydrogens and no C=C double bonds
  - Higher energy, higher melting point (e.g. butter)
  - You can saturate fats by adding hydrogens, "hydrogenation" (Crisco!) (Oxidation or Reduction?)
- Unsaturated means there are C=C double bonds somewhere in the fatty acid chain
  - Cis double bonds create "kinks" in the chains
  - Lower energy, lower melting point (e.g. oil)







#### **Phospholipids**

- Used to construct the cell membrane
- Also with glycerol backbone but only two fatty acids





 This creates a polar (hydrophilic) "head" and non-polar (hydrophobic) tails

### **Phospholipids**

In water, forms "lipid bilayer" with hydrophobic tails facing each other





#### **Steroids**

- Lipids made of a carbon skeleton of four fused rings
- Cholesterol is the main steroid in animal cells
  - Important for animal cell membranes
  - Precursor to all steroid hormones:
    - Estrogen
    - Progesterone
    - Testosterone (androgen)
    - Cortisol (hydrocortizone)







#### **Proteins**

- The most diverse Macromolecule
- 50% of the dry weight of cells
- Polypeptide is a polymer of amino acids
- A <u>protein</u> is a polypeptide (or more than one) folded into a functional conformation.
  (Conformation = shape. Shape = function!)

#### **Amino Acids**

- 20 that commonly appear in nature
- Each has an amino group, a carboxyl group, and a unique side chain
  - At neutral pH, both the amino group and carboxyl group are ionized!
- The Sequence of amino acids in a protein dictates shape, function, etc.



#### **Amino Acids**

- Three general categories of side chains
  - Non polar (hydrophobic)
  - Polar (hydrophilic)
  - Charged (either acid or basic)
- A certain region of a protein has a certain characteristic (e.g., hydrophobic) because the amino acid side chains have that characteristic



#### Nonpolar amino acids



#### Polar Amino Acids



### Electrically Charged Amino Acids



### Biological Macromolecules

|               | Examples                           | Functions                                                 | Monomer<br>(building block)        |
|---------------|------------------------------------|-----------------------------------------------------------|------------------------------------|
| Carbohydrates | Starch, glycogen (polysaccharides) | Energy storage, cell<br>surface marker, cell<br>signaling | Simple sugars (glucose, galactose) |
| Lipids        | Triacylglycerol, cholesterol       | Energy Storage,<br>Cell Membranes,<br>Hormones            | Fatty Acids and Glycerol           |
| Proteins      | Hemoglobin,<br>Enzymes, Collagen   | Catalyze reactions, physical structure, cell signaling    | Amino Acids<br>(glycine, cysteine) |
| Nucleic Acids | DNA, RNA                           | Store Genetic<br>Information, Gene<br>expression          | Nucleotides<br>(A,C,G,T)           |

## No Quiz

Catch up on your reading