General Biology 1 BIO1101

Syllabus & Textbook: http://goo.gl/rvgdrH

Lecturer: Michael Gotesman, PhD

Email: mgotesman@citytech.cuny.edu

Letter Grade	Numerical
	<u>Ranges</u>
Α	93-100
A-	90-92.9
B+	87-89.9
В	83-86.9
B-	80-82.9
C+	77-79.9
С	70-76.9
D	60-69.9
F	59.9 and below

<u>OER</u>

Lecture: https://openlab.citytech.cuny.edu/bio-oer/page/2/

Lab: https://openlab.citytech.cuny.edu/bio-oer/

Grade Breakdown:

Exams (4): 20% Each

Quizzes: 20% Average

Recap: Lecture 5

1. Importance of Water: H₂O Abundance

The main reason the Earth is habitable

70-75% of earth's surface is under water!

70-95% of all cells are water!

The polarity of water allows hydrogen bonding

2. Water in Temperature Moderation

Water absorbs heat from warmer air and releases stored heat to cooler air Water can absorb or release a large amount of heat with only a slight change in its own temperature (Thermal Inertia)

As a liquid evaporates, its remaining surface cools, called **evaporative cooling** lce Floats on water: Protects water underneath

- 3. Water is a solvent (Aqueous Solution)
 - 1) Solute, Solvent, Solution
- 4. Acid/Base Chemistry pH scale
 - 1. Buffers (Blood)
- 5. If the pH of my favorite drink (for example: tomato juice) is 3.5; what is the concentration of H+ and OH- in that drink?

Carbon

Outline

- Importance of Carbon
- Organic vs Inorganic chemistry
- The formation of bonds with carbon
- The hydrocarbons
- Isomers
- Functional groups

Carbon: the backbone of biological molecules

- Although cells are 70–95% water, the rest consists mostly of carbon-based compounds
- Carbon is unparalleled in its ability to form large, complex, and diverse molecules
- Proteins, DNA, carbohydrates, and other molecules that distinguish living matter are all composed of carbon compounds
- Organic Chemistry is the study of Carbonbased molecules

Inorganic vs Organic Chemistry

- Inorganic Chemistry of elements other than carbon
- Organic Carbon-based chemistry

Inorganic	Organic
Usually with (+) & (-) ions	Always contain carbon and hydrogen
Usually ionic bonding	Always covalent bonding
Always with few atoms	Often quite large, with many atoms
Often associated with nonliving matter	Usually associated with living systems

Dihydrogen-monoxide, Organic or Inorganic?

The formation of bonds with Carbon Valence = bond formation

- Remember:
 - Electron configuration is the key to an atom's characteristics
 - atoms like to fill their outer shell
 - Valence = number of e⁻ required to fill outer shell
 - Valence number = number of bonds that the atom will form

The formation of bonds with Carbon

- Carbon generally makes FOUR covalent bonds
 (valence = 4) to fill its outer shell
- This tetravalence makes large, complex molecules possible
- In molecules with multiple carbons, each carbon bonded to four other atoms has a tetrahedral shape
- However, when two carbon atoms are joined by a double bond, the molecule has a flat shape

Some common Carbon Molecules

Molecular Formula

CH₄

(a) Methane

 C_2H_6

(b) Ethane

C₂H₄ (c) Ethene (ethylene) Structural Formula

$$H$$
 $C = C$

Ball-and-Stick Model

Space-Filling Model

Remember: No free rotation around a double bond!!!!

The formation of bonds with Carbon

- The valences of carbon and its most frequent partners (hydrogen, oxygen, and nitrogen) are the "building code" that governs the architecture of living molecules (NOCH or CHON)
- Carbon chains form the skeletons of most organic molecules
- Carbon chains vary in length and shape.

Hydrocarbons

- Skeletons of C-H are called "hydrocarbons"
- Carbon Skeleton can vary

in:

- Length
- Branching
- Double bonds
- Rings

(a) Length

(c) Double bonds

Cyclohexane

(d) Rings

Hydrocarbons

- Hydrocarbons are organic molecules consisting of only carbon and hydrogen
- Many organic molecules, such as fats, have hydrocarbon components
- Hydrocarbons can undergo reactions that release a large amount of energy
- Long-chain hydrocarbons are used as energy storage (fats/oils)
- Because of all the non-polar bonds, these molecules are hydrophobic (water-insoluble), form droplets in aqueous solutions.

Octane & Cyclohexane

Long-chain hydrocarbons

(a) A fat molecule

(b) Mammalian adipose cells

Chemical Structure and Shape ISOMERS

... = molecules with the same chemical FORMULA, but different STRUCTURE and PROPERTIES

Chemical Structure and Shape ISOMERS

... = molecules with the same chemical FORMULA, but different STRUCTURE and PROPERTIES

glyceraldehyde	dihydroxyacetone
H H O	H O H

Functional Groups

- Specific combinations of bonded atoms
- Attached as a group to other molecules
 - Always react in the same manner, regardless of where attached
 - Determine activity and polarity of large organic molecules
 - Many functional groups, but only a few are of major biological importance
- The six most important in Biology:
 - Hydroxyl... (OH) don't confuse with hydroxide (OH-)
 - Carbonyl (CO) \rightarrow C = O
 - Carboxyl (CO₂H) or (COOH) \rightarrow O = C O H
 - Amino $(NH_2) \rightarrow H N H$
 - Sulfhydryl (SH) → S H
 - Phosphate (PO₄)

HYDROXYL (OH)

STRUCTURE

(may be written HO—)

NAME OF COMPOUNDS

Alcohols

(their specific names usually end in *-ol*)

Ethanol, the alcohol present in alcoholic beverages

FUNCTIONAL PROPERTIES

- Polar as a result of the electroneg. oxygen atom drawing e- toward itself
- Attracts water molecules, helping dissolve organic compounds such as sugars

CARBONYL (CO)

STRUCTURE

NAME OF COMPOUNDS

- Ketones if the carbonyl group is within a carbon skeleton
- Aldehydes if the carbonyl group is at the end of the C skeleton

FUNCTIONAL PROPERTIES

A ketone and an aldehyde may be structural isomers with different properties, as is the case for acetone and propanol.

CARBOXYL (CO₂H)

Acetic Acid (taste of vinegar)

STRUCTURE

NAME OF COMPOUNDS

Carboxylic acids or organic acids

FUNCTIONAL PROPERTIES

- Has acidic properties because it's a source of H ions
- Covalent bond between O and H is very polar

AMINO (NH_2)

STRUCTURE

NAME OF COMPOUNDS

Amine

Glycine (also a carboxylic acid so it's an amino acid)

FUNCTIONAL PROPERTIES

- Acts as a base (take up protons)
- Ionized at pH<10

$$-N \begin{pmatrix} H & H \\ -+N-H \\ H & H \end{pmatrix}$$

SULFHYDRYL (SH)

Cysteine

STRUCTURE

May be written HS-

NAME OF COMPOUNDS Thiols

FUNCTIONAL PROPERTIES

Two sulfhydryl groups can interact to help stabilize protein structure by formation of di-sulfide bridges

PHOSPHATE (PO₄)

Glycerol phosphate

STRUCTURE

NAME OF COMPOUNDS

Organic phosphates

FUNCTIONAL PROPERTIES

- Negatively charged: Anion
- Capable of high-energy bond formation

Identify the functional groups!

Identify the functional groups!

Identify the functional groups!

