### General Biology 1 BIO1101

Syllabus & Textbook: <a href="http://goo.gl/rvgdrH">http://goo.gl/rvgdrH</a>

Lecturer: Michael Gotesman, PhD

Email: mgotesman@citytech.cuny.edu

| Letter Grade | Numerical      |  |  |  |  |
|--------------|----------------|--|--|--|--|
|              | <u>Ranges</u>  |  |  |  |  |
| Α            | 93-100         |  |  |  |  |
| A-           | 90-92.9        |  |  |  |  |
| B+           | 87-89.9        |  |  |  |  |
| В            | 83-86.9        |  |  |  |  |
| B-           | 80-82.9        |  |  |  |  |
| C+           | 77-79.9        |  |  |  |  |
| С            | 70-76.9        |  |  |  |  |
| D            | 60-69.9        |  |  |  |  |
| F            | 59.9 and below |  |  |  |  |
|              |                |  |  |  |  |

### <u>OER</u>

Lecture: <a href="https://openlab.citytech.cuny.edu/bio-oer/page/2/">https://openlab.citytech.cuny.edu/bio-oer/page/2/</a>

Lab: <a href="https://openlab.citytech.cuny.edu/bio-oer/">https://openlab.citytech.cuny.edu/bio-oer/</a>

### **Grade Breakdown:**

Exams (4): 20% Each

Quizzes: 20% Average

### Recap: Lecture 4

#### 1. Atomic Structure: P, N, E

Atomic Number (# of Protons)

Atomic Mass (# of Protons + Neutrons)

Atomic Charge (# of Protons- # Electrons)

#### 2. Electron spacing

- 1) Valence Electrons Outer most electrons
- First Orbital up to 2 electrons (H, He)
- 3) Following Orbitals (Octet) up to 8 Electrons

#### 3. Molecules

- 1) Two or more elements combine H<sub>2</sub>O, C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>
- 2) Ionic bond is formed from the transfer of electron
- 3) Covalent bond is formed from sharing of electrons

### 4. Redox – Reduction/Oxidation

- 1) LEO/GER
- 2) Reduction Gain of Hydrogen (H<sup>-</sup>)
- 3) Oxidation Loss of Hydrogen (H-)
- 4) Oxidation Addition of Oxygen 4Fe +  $3O_2 \rightarrow 2Fe_2O_3$
- 5) Reduction Loss of Oxygen CO<sub>2</sub> + 2H<sub>2</sub> → CH<sub>4</sub> + O<sub>2</sub>

### 5. Periodic Table: Dmitri Mendeleev (1860's)

0.7

0.9

| 1<br><b>H</b><br>2.20   | Fox breeding: Dmitri Belyaev (1950's) |                         |                         |                        |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
|-------------------------|---------------------------------------|-------------------------|-------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| 3<br><b>Li</b><br>0.98  | 4<br><b>Be</b><br>1.57                |                         |                         |                        |                         |                         |                         |                         |                         |                         |                         | 5<br><b>B</b><br>2.04   | 6<br><b>C</b><br>2.55   | 7<br><b>N</b><br>3.04   | 8<br><b>O</b><br>3.44   | 9<br><b>F</b><br>3.98   |
| 11<br><b>Na</b><br>0.93 | 12<br><b>Mg</b><br>1.31               |                         |                         |                        |                         |                         |                         |                         |                         |                         | 13<br><b>Al</b><br>1.61 | 14<br><b>Si</b><br>1.90 | 15<br><b>P</b><br>2.19  | 16<br><b>S</b><br>2.58  | 17<br><b>CI</b><br>3.16 |                         |
| 19<br><b>K</b><br>0.82  | 20<br><b>Ca</b><br>1.00               | 21<br><b>Sc</b><br>1.36 | 22<br><b>Ti</b><br>1.54 | 23<br><b>V</b><br>1.63 | 24<br><b>Cr</b><br>1.66 | 25<br><b>Mn</b><br>1.55 | 26<br><b>Fe</b><br>1.83 | 27<br><b>Co</b><br>1.88 | 28<br><b>Ni</b><br>1.91 | 29<br><b>Cu</b><br>1.90 | 30<br><b>Zn</b><br>1.65 | 31<br><b>Ga</b><br>1.81 | 32<br><b>Ge</b><br>2.01 | 33<br><b>As</b><br>2.18 | 34<br><b>Se</b><br>2.55 | 35<br><b>Br</b><br>2.96 |
| 37<br><b>Rb</b><br>0.82 | 38<br><b>Sr</b><br>0.95               | 39<br><b>Y</b><br>1.22  | 40<br><b>Zr</b><br>1.33 | 41<br><b>Nb</b><br>1.6 | 42<br><b>Mo</b><br>2.16 | 43<br><b>Tc</b><br>1.9  | 44<br>Ru<br>2.2         | 45<br><b>Rh</b><br>2.28 | 46<br><b>Pd</b><br>2.20 | 47<br><b>Ag</b><br>1.93 | 48<br><b>Cd</b><br>1.69 | 49<br><b>In</b><br>1.78 | 50<br><b>Sn</b><br>1.96 | 51<br><b>Sb</b><br>2.05 | 52<br><b>Te</b><br>2.1  | 53<br><b>I</b><br>2.66  |
| 55<br><b>Cs</b><br>0.79 | 56<br><b>Ba</b><br>0.89               | 57<br><b>La</b><br>1.1  | 72<br><b>Hf</b><br>1.3  | 73<br><b>Ta</b><br>1.5 | 74<br><b>W</b><br>2.36  | 75<br><b>Re</b><br>1.9  | 76<br><b>Os</b><br>2.2  | 77<br><b>Ir</b><br>2.20 | 78<br><b>Pt</b><br>2.28 | 79<br><b>Au</b><br>2.54 | 80<br><b>Hg</b><br>2.00 | 81<br><b>Ti</b><br>1.62 | 82<br><b>Pb</b><br>2.33 | 83<br><b>Bi</b><br>2.02 | 84<br><b>Po</b><br>2.0  | 85<br><b>At</b><br>2.2  |
| 87<br><b>Fr</b>         | 88<br><b>Ra</b>                       |                         |                         |                        |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |

https://www.youtube.com/watch?v=LcUNYGdNKlo&list=RDLcUNYGdNKlo#t=10

Bio 1101-Lecture 5 Fall 2017

# WATER & pH



### The Molecule that supports Life

- H<sub>2</sub>O dihydrogen monoxide
- 70-75% of earth's surface is under water!
- 70-95% of all cells are water!
- The abundance of water is the main reason the Earth is habitable
- The polarity of water allows hydrogen bonding

## Water Molecule, H<sub>2</sub>O







a. Water (H<sub>2</sub>O)



d. Methane-continued



## Review of Hydrogen bonding



- The oxygen atom is more <u>electronegative</u> than the hydrogen atom, so the electrons are "pulled" more towards the oxygen.
- The oxygen atom has a partial negative charge, the hydrogens have a partial positive charge
- This causes weak, temporary attraction between molecules

### Hydrogen bonding and water

One molecule of water can be involved in 4 hydrogen bonds



### The Molecule that supports Life

- Four central properties of water that allow life:
  - Cohesion & Adhesion
  - Moderation of Temperature
  - Ice Floats!
  - Polar Solvent

# Properties of Water Cohesion & Adhesion

- Collectively, hydrogen bonds hold water molecules together, a phenomenon called cohesion
- Cohesion helps the transport of water against gravity in plants
  - Capillary Action
- Adhesion of water to plant cell walls also helps to counter gravity
- Surface tension is a measure of how hard it is to break the surface of a liquid
- Surface tension is related to cohesion



# Unique Properties of Water Moderation of Temperature

- Water absorbs heat from warmer air and releases stored heat to cooler air
- Water can absorb or release a large amount of heat with only a slight change in its own temperature
- Thermal inertia resistance to temperature change
  - More heat required to raise water one degree than most other liquids (1 calorie per gram)
  - 1 calorie = amount of heat energy needed to raise the temp. of 1 gram of water 1° C per gram)

### Water's High Specific Heat

- The specific heat of a substance is the amount of heat that must be absorbed or lost for 1 gram of that substance to change its temperature by 1°C (in calories/g/°C)
- Water's high specific heat (1 cal/g/°C) minimizes temperature fluctuations to within limits that permit life
  - Heat is absorbed when hydrogen bonds break
  - Heat is released when hydrogen bonds form



 a. Calories lost when 1 g of liquid water freezes and calories required when 1 g of liquid water evaporates.

### **Evaporative Cooling of Animals**



Bodies of organisms cool when their heat is used to evaporate water.

 As a liquid evaporates, its remaining surface cools, a process called evaporative cooling

# Properties of Water: Uniqueness of Ice

- Frozen water less dense than liquid water
  - Below 4°C, water begins to form a "lattice" that is LESS dense than liquid water = hydrogen bonds in ice are more "ordered," making ice less dense
- Otherwise, oceans and deep lakes would fill with ice from the bottom up
- Ice acts as an insulator on top of a frozen body of water
- Melting ice draws heat from the environment



# Unique Properties of Water: **Solvent of Life**

### **Definitions**

- A solution is a liquid that is a homogeneous mixture of substances
- A solvent is the dissolving agent of a solution
- The solute is the substance that is dissolved
- An aqueous solution is one in which water is the solvent
- Polar compounds readily dissolve; hydrophilic
- Nonpolar compounds dissolve only slightly; hydrophobic



### Water as a solvent

- Water is a POLAR solvent
  - Water is an effective solvent because it readily forms hydrogen bonds
  - When an ionic compound is dissolved in water, each ion is surrounded by a sphere of water molecules





Na<sup>+:</sup> Attracted to negative (O) end of H<sub>2</sub>O Each Na<sup>+</sup> completely surrounded by H<sub>2</sub>O

Cl<sup>-:</sup> Attracted to positive (H<sub>2</sub>) end of H<sub>2</sub>O Each Cl<sup>-</sup> completely surrounded by H<sub>2</sub>O

### What is the pH scale?

A measure of hydrogen ion (H<sup>+</sup>) concentration

Working scale is between 0 and 14 with 7 being neutral

A pH below 7 is acidic and above 7 is basic

 The concentration of hydrogen (H<sup>+</sup>) ions between each whole number changes by a factor of 10

- In a solution, some water molecules dissociate into (OH<sup>-</sup>) and (H<sup>+</sup>) ions = A hydrogen atom in a hydrogen bond between two water molecules can shift from one to the other
  - The hydrogen atom leaves its electron behind and is transferred as a proton, or hydrogen ion (H+)
  - Actually, the H<sup>+</sup> ions bind to another water and become H<sub>3</sub>O<sup>+</sup>, but we can ignore this.
  - The molecule that lost the proton is now a hydroxide ion (OH<sup>-</sup>)



The process can be described in a simplified way as the separation of a water molecule into a hydrogen ion (H+) and a hydroxide ion (OH-)



- These ions, OH- and H+, (while very rare) are EXTREMELY important
  - They are very reactive
  - They establish acid-base reactions in aqueous solutions
  - Changes in concentrations of H<sup>+</sup> and OH<sup>-</sup> can drastically affect the chemistry of a cell

- Concentrations of H<sup>+</sup> and OH<sup>-</sup> are equal in pure water
- In aqueous solutions, adding certain solutes, called acids and bases, modifies the concentrations of H<sup>+</sup> and OH<sup>-</sup>
- Biologists use something called the pH scale to describe the concentration of these ions a solution
- The pH of a solution is dependent on H<sup>+</sup> ions:
  - $pH = -log[H +] (in M), [H +] = 10^{-pH} or 1/10^{pH} AND...$
  - $[H^+] \times [OH^-] = 10^{-14} M (M = mol/L)$

|           | ( | l+]<br>per liter) | рН |                  |   |
|-----------|---|-------------------|----|------------------|---|
| 0.000001  | = | 1                 | ×  | 10-6             | 6 |
| 0.0000001 | = | 1                 | ×  | $10^{-7}$        | 7 |
| 0.0000001 | = | 1                 | ×  | 10 <sup>-8</sup> | 8 |



# High or Low pH?

- The pH of a solution is dependent on H<sup>+</sup> ions:
  - -pH = -log[H +] (in M) AND...  $[H+] \times [OH-] = 10^{-14} M$  (M = mol/L)
  - In pure water,  $[H^+] = 10^{-7} \text{ M}$ , and  $[OH^-] = 10^{-7} \text{ M}$
  - Thus, pH of 7 means [H<sup>+</sup>] = [OH<sup>-</sup>]. We call this neutral.
  - $-[H^+] > [OH^-]$ , then the **pH<7 = ACIDIC**
  - $-[H^+] < [OH^-]$ , then the **pH>7 = BASIC**
  - Most biological fluids have pH values in the range of 6 to 8

## The pH Scale





### Acidic or Basic?

### **Acids and Bases**

- \* Acid = something that increases [H<sup>+</sup>], lowers [OH<sup>-</sup>], and thus... lowers pH
- ★ Base = something that increases [OH<sup>-</sup>], lowers [H<sup>+</sup>], and thus... raises pH
- \* A STRONG Acid or base COMPLETELY dissociates in solution
  - \*E.g. HCl (acid), NaOH (base)
- \* Weak Acid/base does NOT completely dissociate
  - \*e.g., acid...  $H_2CO_3 \leftarrow \rightarrow H^+ + HCO_3^-$ .
  - \*base...  $NH_3 + H^+ \leftarrow \rightarrow NH_4^+$ .

### pH buffers

- Substances that resist pH changes in a solution
- Work by absorbing/donating H+ ions
- A combination of weak acid and conjugate base (or vice versa) that have an "ideal" pH.
- Example: Carbonic Acid  $\leftarrow \rightarrow$  Bicarbonate  $H_2CO_3 \leftarrow \rightarrow H^+ + HCO_3^-.$
- Blood has several buffering agents that keep the pH at 7.4... it is VERY resistant to change!

### **Buffers in Biology**

- Health of organisms requires maintaining pH of body fluids within narrow limits
  - \*Human blood normally 7.4 (slightly alkaline)
  - \*Many foods and metabolic processes add or subtract H<sup>+</sup> or OH<sup>-</sup> ions
    - \*Reducing blood pH to 7.0 results in acidosis
    - \*Increasing blood pH to 7.8 results in alkalosis
    - **★**Both life threatening situations
  - \*Bicarbonate ion (-HCO<sub>3</sub>) in blood buffers pH to 7.4



# Is high pH water healthy?

# The threat of Acid precipitation

- Acid precipitation refers to rain, snow, or fog with a pH lower than 5.6
- Acid precipitation is caused mainly by the mixing of different pollutants with water in the air
- Acid precipitation can damage life in lakes and streams

Effects of acid precipitation on soil chemistry are contributing

to the decline of some forests





### Dangers of dihydrogen monoxide

- Dihydrogen Monoxide (DHMO) is a colorless and odorless chemical compound, also referred to by some as Dihydrogen Oxide, Hydrogen Hydroxide, Hydronium Hydroxide, or simply Hydric acid.
- 70-75% of earth's surface is covered by DHMO!
- Research conducted by award-winning U.S. scientist Nathan Zohner concluded that roughly 86 percent of the population supports a ban on dihydrogen monoxide.

What is DHMO and do you support this ban?