General Biology 1 BIO1101 Syllabus & Textbook: <u>http://goo.gl/rvgdrH</u>

Lecturer: Michael Gotesman, PhD Email: mgotesman@citytech.cuny.edu

Letter Grade	Numerical
	Ranges
A	93-100
A-	90-92.9
B+	87-89.9
В	83-86.9
B-	80-82.9
C+	77-79.9
С	70-76.9
D	60-69.9
F	59.9 and below

<u> 0ER</u>

Lecture:<u>https://openlab.citytech.cuny.edu/bio-oer/page/2/</u>Lab: <u>https://openlab.citytech.cuny.edu/bio-oer/</u>

Grade Breakdown:

Exams (4): 20% Each Quizzes: 20% Average

Recap: Lecture 3

1. Matter

Mass and Space

2. Atoms

- 1) Protons, Neutrons, and Electrons
- 2) Elements/Isotopes
- 3) Valence Electrons (Octet) Octogan

3. Periodic Table

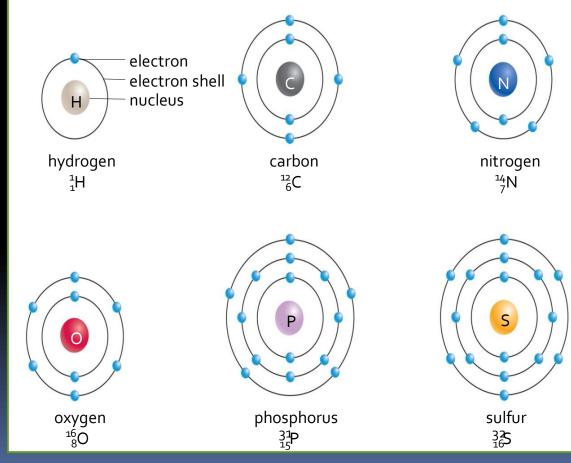
4. Molecules

- 1) Two or more atoms combine H_2O , $C_6H_{12}O_{6}$, O_2
- Redox Reduction/Oxidation
 Gain of Electron is Reduction
 Gain of Hydrogen (H⁻) is Reduction
 Gain of Oxygen is Oxidation

5. Reactions

- 1) Activation Energy
- 2) Catalyst/Enzyme

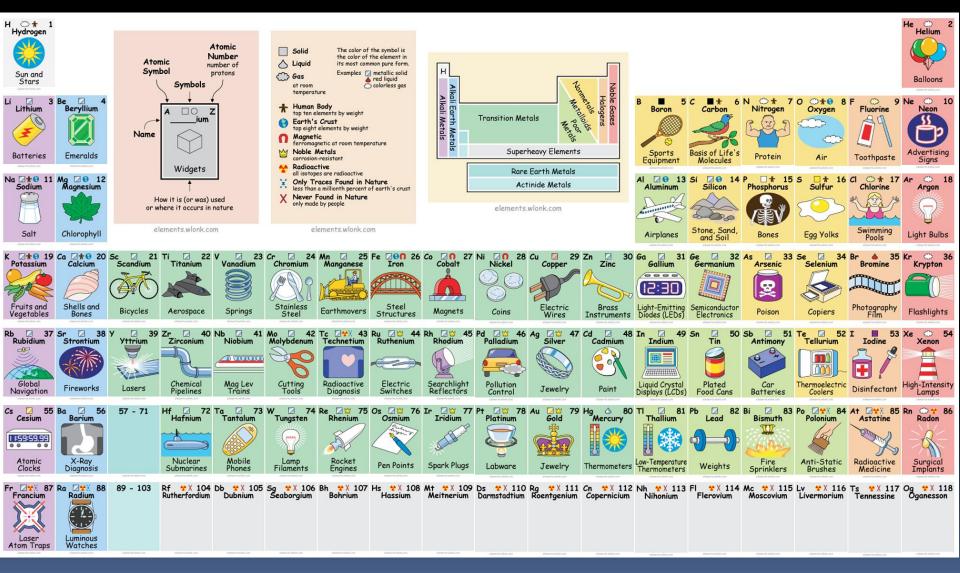
Outline


Review:

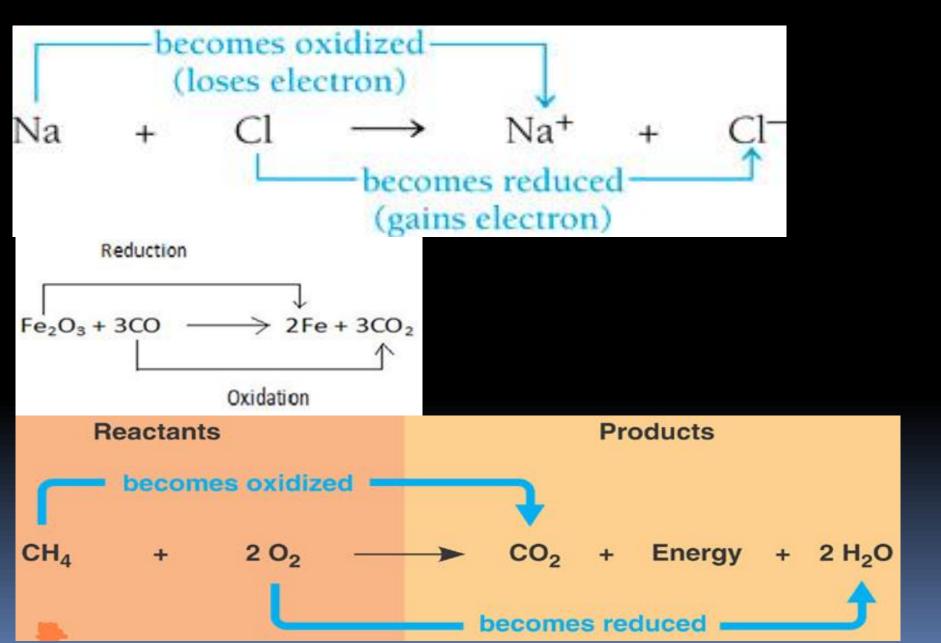
- Atomic symbol
- Electron configuration
- Chemical Bonds
 - Covalent Bonding
 - Electronegativity
 - Polar and nonpolar covalent bonds
 - Ionic Bonding
 - Weak Bonds
 - Hydrogen Bonding
 - Van der Waals forces

The Octet Rule for -- Distribution of Electrons

Neils Bohr models (1910's) show electron shells as concentric circles around nucleus


- Each shell has two or more electron orbitals
 - Innermost shell has two orbitals
 - Outer most orbital (valence) should have 8 electrons (octet)

Dmitri Mendeleev's Table: 1869 *Nickel has a lower mass than Cobalt *Au is right next to Hg, huh???? – Who cares? Hg named after the planet Mercury (the origin of the symbol Hg is the Latin word "hydrargyrum" meaning "liquid silver")


Relhen	Gruppe I. R ² O	Gruppe II. — RO	Gruppe III. R ² O ³	Gruppe IV. RH ⁴ RO ³	Gruppe V. RH ³ R ² 0 ⁵	Gruppe VI. RH ¹ RO ³	Gruppe VII. RH R ² O ⁷	Gruppe VII. RO ⁴
1	H = 1				5) 			
2	Li = 7	Be = 9.4	B = 11	C = 12	N = 14	0 = 16	F = 19	
3	Na = 23	Mg = 24	AI = 27.3	Si = 28	P = 31	S = 32	CI = 35.5	
4	K = 39	Ca = 40	-= 44	TI = 48	V = 51	Cr = 52	Mn = 55	Fe = 56, Cb = 59, Ni = 59, Cu = 63.
5	(Cu = 63)	Zn = 65	-= 68	- = 72	As = 75	Se = 78	Br = 80	*
6	Rb = 85	Sr = 87	?Yt = 88	Zr = 90	Nb = 94	Mo = 96	-= 100	Ru = 104, Rh = 104, Pd = 106, Ag = 108.
7	(Ag = 108)	Cd = 112	In = 113	Sa = 118	Sb = 122	Te = 125	J = 127	
8	Cs = 133	Ba = 137	?Di = 138	?Ce = 140	- CE	3 <u>000</u> 5	-	100 100 100 100
9	()	1 2			-	-		
10			?Er = 178	?La = 180	Ta = 182	W = 184	-120	Os = 195, Ir = 197, Pt = 198, Au = 199.
11	(Au = 199)	H g = 200	TI = 204	Pb = 207	Bi = 208	<u> </u>		
12				Th = 231		U = 240		<u> </u>

Periodic Table:

https://www.youtube.com/watch?v=YIIUXHZR3ZA

Redox Reactions

Bio 1101-Lecture 4

INORGANIC CHEMISTRY (CONT.)

Energy

Energy is the capacity to cause change ("ability to do work")

- Things tend to flow from <u>high to low</u> energy: High energy = unstable, low energy = stable
- Forms of Energy
- Kinetic:
 - Energy of motion
 - Mechanical
- Potential:
 - Stored energy
 - Chemical

Potential energy is the energy that matter has because of its location or structure

Exergonic and Endergonic Reactions

 $\Delta G = -686 \text{ kcal/mol } !!!!!!!!!$

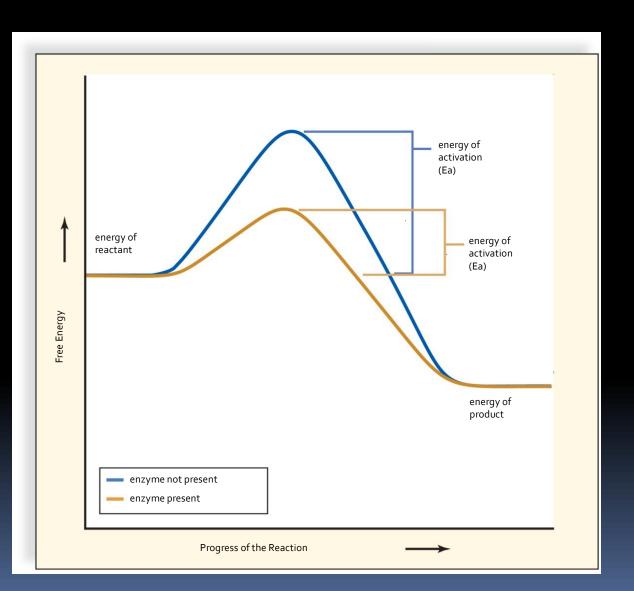
 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O +$

 Exergonic Reactions - Products have less free energy than reactants => energy is released reaction is spontaneous

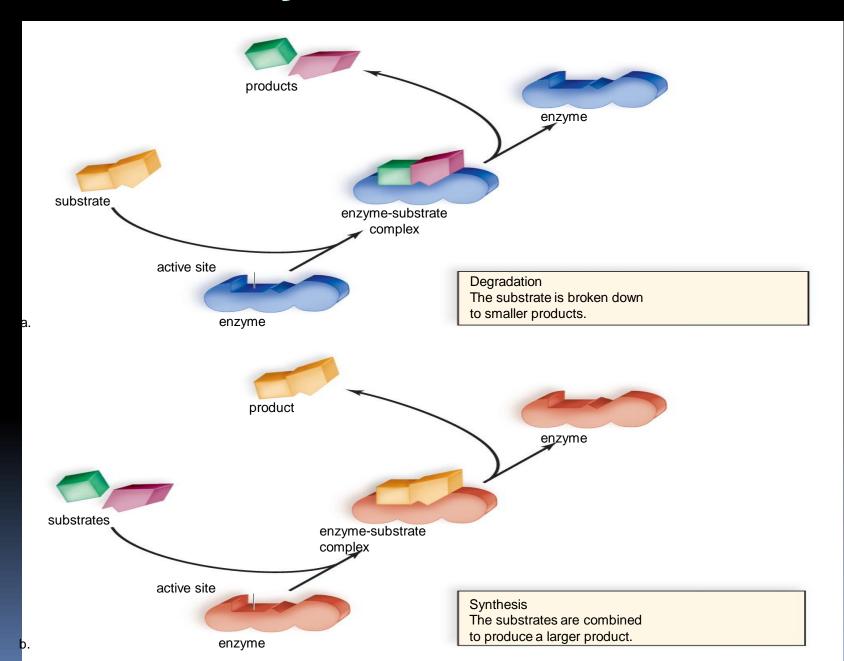
-becomes reduced

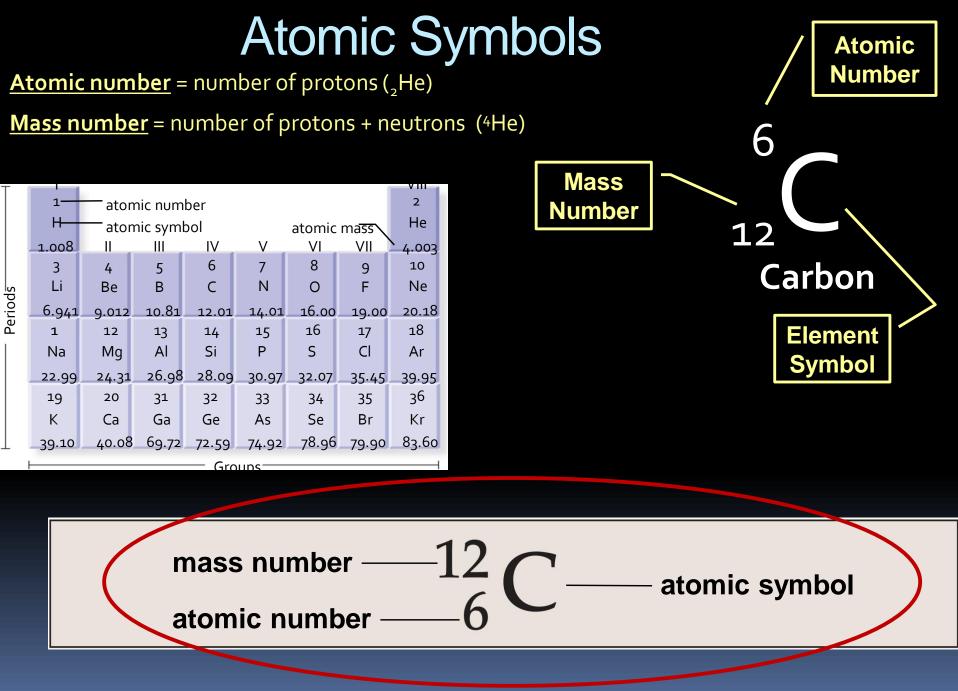
Exothermic – energy is released as heat

becomes oxidized

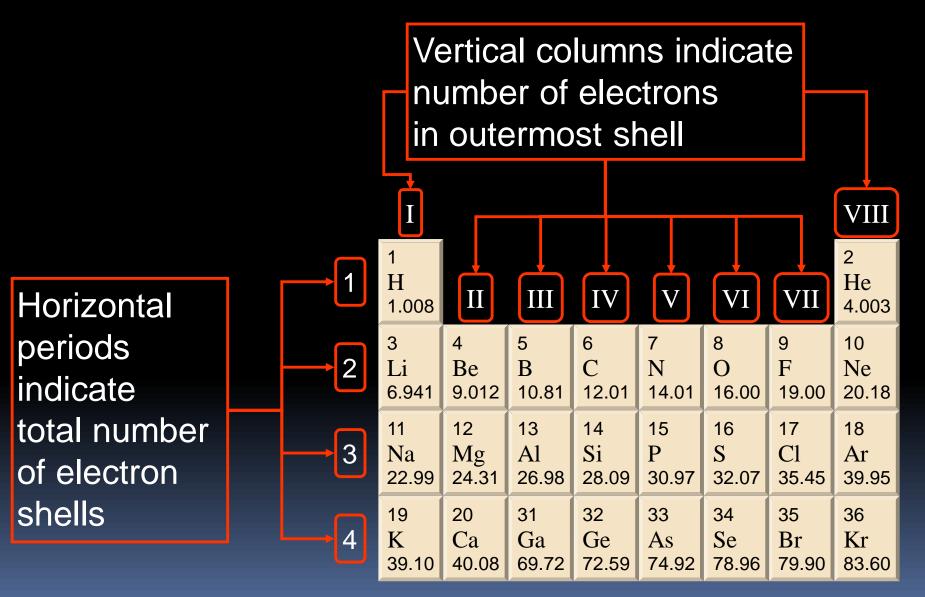

- Endergonic Reactions Products have more free energy than reactants => Energy is necessary
 - Endothermic energy is absorbed as heat

Energy

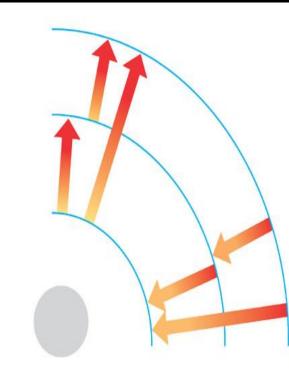

Energy of Activation and Enzymes


- Reactants often "reluctant" to participate in reaction
 - Energy must be added to at least one reactant to initiate the reaction
 - Energy of activation (Ea)
 - Catalysts operate by lowering the energy of activation
- Enzymes:
 - are Organic Catalysts
 - Enzyme Lower (Ea) by bringing the substrates into contact with one another

Energy of Activation



Enzymatic Actions


Periodic Table (Revisited)

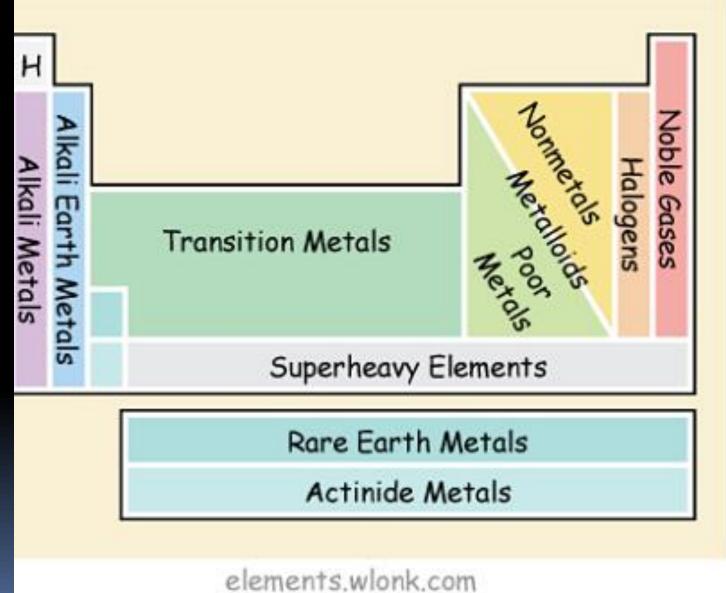
Electrons Configuration

- 1st electron shell = capacity of 2 e⁻
- 2nd electron shell = capacity of 8 e⁻
- 3rd electron shell = capacity of 18 e⁻ (but only fills to 8)

VALENCE shell = outer shell (valence = properties)
 -valence electrons: electrons in the outermost shell
 -Atoms "like" to have their valence shell filled (2 or 8)

Question (Test like)

Look at Magnesium (²⁵₁₂Mg). How many electron shells does it have? How many valence electrons?


A.1 shell; 2 valence e-B.12 shells; 3 valence e-C. 3 shells; 12 valence e-D. 3 shells; 2 valence e-

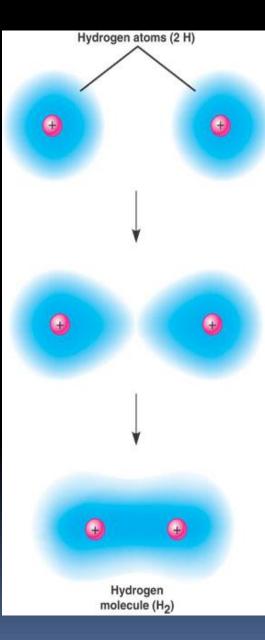
Electrons Configuration & Chemical Properties

- The periodic table of the elements shows the electron distribution of each element
- An atom's chemical properties are due to the configuration of its electrons
- The chemical behavior of an atom is mostly determined by the valence electrons

Chemical Properties:

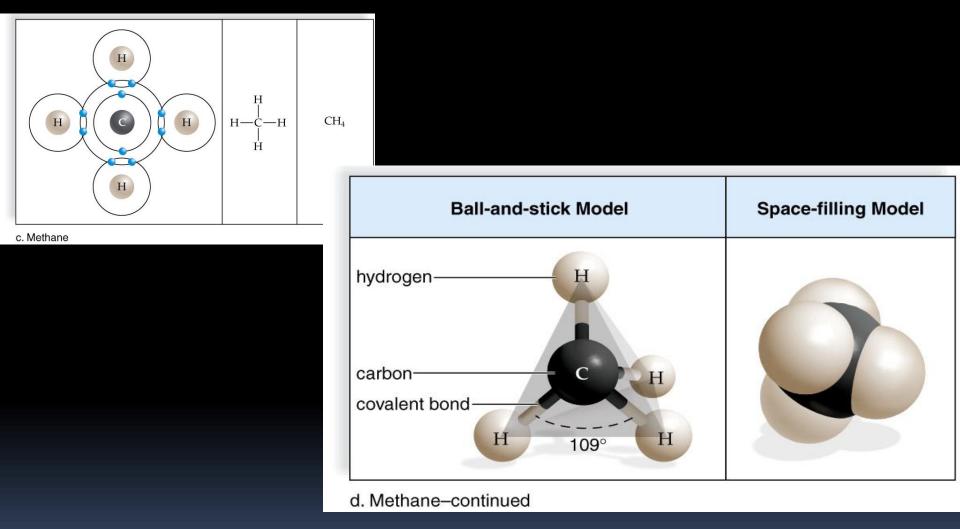
https://www.youtube.com/watch?v=LcUNYGdNKlo

Chemical Bonding


 Atoms are "bonded" together when their electrons interact in one of two ways...

Covalent Bonding

- Sharing of valence electrons between 2 atoms
- If the atoms are different, it is a "compound"
- Electrons are shared in pairs! One pair = single bond, two pairs = double bond, etc.
- This forms a "molecule" (hydrogen atom vs. molecule)


Ionic Bonding

- Strong electrostatic attraction between two atoms due to transfer of electron(s) from one atom to the other.
- Atoms "want" to bond together in a way that will fill their valence shells. (Valence number = e⁻ needed)

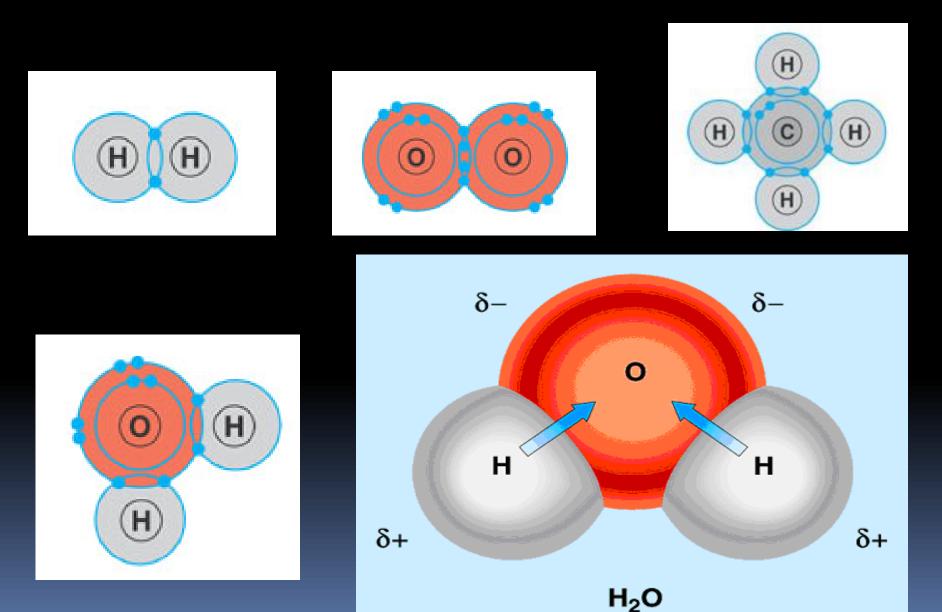
Covalent Name Electron-Structural Space-(molecular shell formula filling Bonding formula) model diagram (a) Hydrogen (H₂) H H - HH Oxygen 0 0 (b) Oxygen (O₂) 0=0 H 0 0-H (c) Water (H₂O) H н H н C н-с-н (d) Methane (CH₄) H H H

Molecules are in three dimensions!

When an electron pair is shared, the shape of the orbital changes. No longer a "dumbell" around the nucleus, but in a cloud between the two bonded atoms

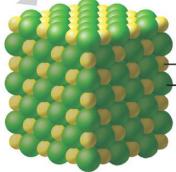
Electronegativity

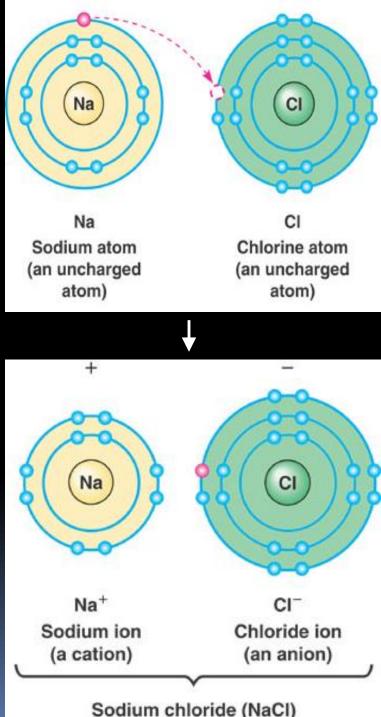
- Electronegativity is an atom's attraction for the electrons in a covalent bond
- The more electronegative an atom, the more strongly it pulls shared electrons toward itself
- Remember, atoms to the RIGHT of the periodic table are more <u>electronegative</u> than atoms on the left.
- This means, when two atoms are bonded together in a covalent bond, the more electronegative atom will "pull" electrons more toward it and thus... it will have a partial negative charge


Electronegativity

1 H 2.20																
3	4										5	6	7	8	9	
Li	Be										B	C	N	0	F	
0.98	1.57 Pauling Electronegativity Values										2.04	2.55	3.04	3.44	3.98	
11 Na 0.93	12 Mg 1.31											13 Al 1.61	14 Si 1.90	15 P 2.19	16 S 2.58	17 Cl 3.16
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
0.82	1.00	1.36	1.54	1.63	1.66	1.55	1.83	1.88	1.91	1.90	1.65	1.81	2.01	2.18	2.55	2.96
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I
0.82	0.95	1.22	1.33	1.6	2.16	1.9	2.2	2.28	2.20	1.93	1.69	1.78	1.96	2.05	2.1	2.66
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Ti	Pb	Bi	Po	At
0.79	0.89	1.1	1.3	1.5	2.36	1.9	2.2	2.20	2.28	2.54	2.00	1.62	2.33	2.02	2.0	2.2
87 Fr 0.7	88 Ra 0.9															

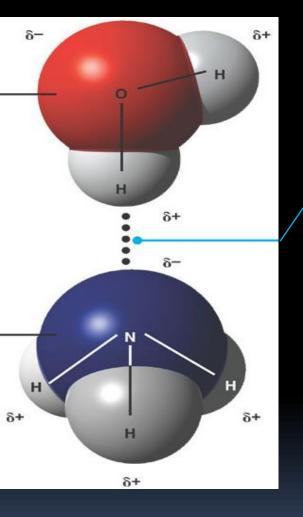
Non-polar vs. polar covalent bonds


- Non-polar covalent bonds
 - Electrons are shared equally between atoms
- Polar covalent bonds
 - Electrons are NOT shared equally
 - This is because some atoms have higher "electronegativity"
 - This means they have a stronger attraction for electrons
 - INCREASES toward the RIGHT on the periodic table
 - If the there are differences in electronegativity that are not symmetrical, the molecule will be polar.
 - The shape of the molecule determines where the partial poles will be.

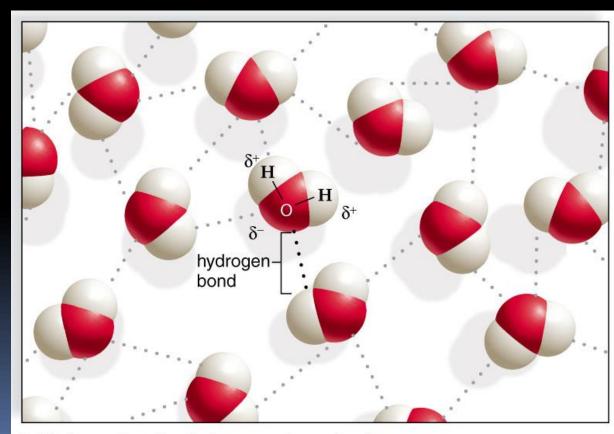

Examples of polar and non-polar

lonic bonds

- This occurs when one atom actually TAKES an electron(s) from another
- (Just like with covalent bonds...) the goal is to end up with a FULL valence
- Both the DONOR and the Receiver will have full valences!
- Atoms that have an extra or missing electron are charged, called IONS. (+ = cation, - = anion)
- Two complimentary ions come together to form a SALT


Weak Chemical Bonding

 Attraction between two molecules that is weak and transient (temporary), not a true "bond" because it can be easily broken without changing the chemical nature


Hydrogen bonding

- Hydrogen atoms are often bound to more electronegative atoms, and are thus slightly positively charged.
- This slightly positive pole can then attract a negatively charged pole of another molecule.

Hydrogen Bonding

Hydrogen bond

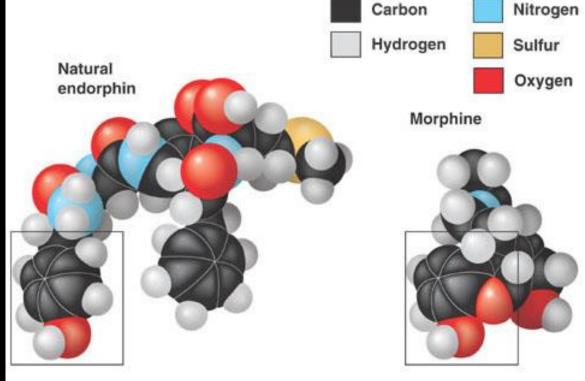
b. Hydrogen bonding between water molecules

Weak Chemical Bonding

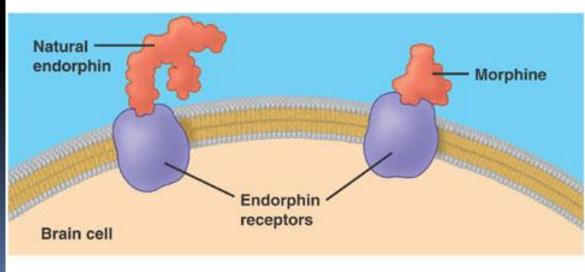
van der Waals Forces

- Because electrons are in constant motion, a molecule can have short-lived "hot spots" of positive and/or negative charge.
- When molecules are VERY close together, this slight charges can result in attractive or repulsive forces
- Collectively, such interactions can be strong, as between molecules of a gecko's toe hairs and a wall surface

https://www.youtube.com/watch?v=45yabrnryXk https://www.youtube.com/watch?v=wJ rbsytjl



Molecular shape and function


- Most of the strongest bonds in organisms are covalent bonds that form a cell's molecules
- Weak chemical bonds, such as ionic bonds and hydrogen bonds, are also important: these bonds reinforce shapes of large molecules and help molecules adhere to each other

Shape = Function!

(a) Structures of endorphin and morphine

(b) Binding to endorphin receptors