General Biology 1 BIO1101 Syllabus & Textbook: <u>http://goo.gl/rvgdrH</u>

Lecturer: Michael Gotesman, PhD Email: mgotesman@citytech.cuny.edu

Letter Grade	Numerical
	Ranges
Α	93-100
A-	90-92.9
B+	87-89.9
В	83-86.9
B-	80-82.9
C+	77-79.9
С	70-76.9
D	60-69.9
F	59.9 and below

<u> 0ER</u>

Lecture:<u>https://openlab.citytech.cuny.edu/bio-oer/page/2/</u> Lab: <u>https://openlab.citytech.cuny.edu/bio-oer/</u>

Grade Breakdown:

Exams (4): 20% Each Quizzes: 20% Average

Recap: Lecture 2

1. Pioneers in the Theory of Evolution

- a. Carolus Linnaeus (1730's)– father of taxonomy (classification). Invented binomial nomenclature: *Genus species*
- b. Jean-Baptiste Lamarck (Early 1800's) theory of "use and disuse" leading to "inheritance" of acquired characteristics
- c. Thomas Robert Malthus (Early 1800) Limited resources
- d. Alfred Russel Wallace and Charles Darwin (1850-60)- Naturalists Explored the world – articulated common ancestor (evolution)

2. Theory of Evolution

- a. Organisms are related
- b. Individuals have heritable variations
- c. Limited resources
- d. Natural Selection

Caused by Adaptation to a changing environment

3. Evidence for Evolution

a. Biogeographical, Anatomical Evidence, Biochemical http://www.telegraph.co.uk/news/2017/02/18/newly-discovered-weird-life-forms-may-offer-clue-life-mail Bio 1101-Lecture 3

INORGANIC CHEMISTRY

Outline

- Matter, Elements, Compound & Molecules
 - Definitions
 - Formula
- Atoms
 - Subatomic particles
 - Atomic Mass and Atomic Number
 - Atomic symbols
- The Periodic Table
- Isotopes
 - Definition & examples
 - Medical use
 - Electrons and Energy
- Electrons
 - Orbitals and Shells
 - Bohr's model and the Octet Rule
 - Oxidation and Reduction
 - Energy
 - Activation Energy and Enzymes

MATTER

Organisms are made of matter

- Matter is defined as anything that has mass and occupies space
- Matter exists in three states: solid, liquid, and gas
- All matter (both living and non-living) is composed of 92 naturally-occurring elements
- 98% of body weight of organisms are primarily composed of six elements (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur—acronym CHNOPS) make up 98% of the body weight of organisms.

Elements, Compounds and Molecules

- Matter is made up of elements
- Element pure substance made of ONE type of atom. Cannot be broken down, even by chemical reaction.
 - 92 naturally occurring elements
 - 25 are essential to life
 - 96% of biomass is: O,C,H,N
 - CHNOPS make up 98% of the body weight of organisms.
- <u>Compound</u> two or more different elements chemically combined, in a fixed ratio, into a new substance with new properties (emergent properties)
- Molecule and compound is used interchangeably
 - In Biology molecule is used e.g. molecule of water (H_2O) molecule of glucose ($C_6H_{12}O_6$)
- Bonds that exist between atoms in molecules contain energy

Compounds and Molecules: Formula

Glucose

ATOMS

- Atom is the smallest unit of an element
- Atoms composed of <u>subatomic particles</u>:
- The subatomic particles are:
 - Protons positive charge; weight of approximately 1 Dalton, found in the nucleus
 - Neutrons no charge; weight similar to protons, found in the nucleus
 - Electrons negative charge; weigh 1/1836th Dalton; found in electron shell
- Atoms contain specific numbers of protons, neutrons, and electrons.

http://phet.colorado.edu/sims/html/build-an-atom/latest/build-an-atom_en.html

Anyone Recognize Him?

What's the symbol on his head? \rightarrow

Subatomic Particles

a.) (= proton = neutron = electron	
Subatomic Particles				
Particle	Electric Charge	Atomic Mass Unit (AMU)	Location	
Proton	+1	1	Nucleus	
Neutron	0	1	Nucleus	
Electron	-1	0	Electron shell	

С.

Atomic Symbols

- Each element is represented by one or two letters to give them a unique atomic symbol
 - H = Hydrogen, Na = Sodium, C = Carbon
- Each atom has its own specific mass (atomic mass)
- Atomic mass of an atom depends on the presence of subatomic particles
 - Atomic number = proton number;
 - Atomic mass or mass number = protons and neutrons

PERIODIC TABLE

- Elements grouped in periodic table based on characteristics
 - Vertical columns = groups; chemically similar
 - Horizontal rows = periods; larger and larger
- Atomic mass increases as you move down a group or across a period.

ISOTOPES

- Isotopes atoms of an element that have different numbers of neutrons
 - Protons are always the same (atomic number)
 - Mass will be different
 - Physical and Chemical properties are the same
 - However... as isotopes get heavy, they become radioactive

$^{12}_{6}$	¹³ 6	
Carbon 12	Carbon 13	

¹⁴ 6 6 Carbon 14

- Some isotopes spontaneously decay
 - Radioactive
 - Give off energy in the form of rays and subatomic particles
 - Can be used as tracers
 - Mutagenic Can cause cancer
- Examples
 - Hydrogen: ${}^{1}H = hydrogen$, ${}^{2}H = deuterium$, ${}^{3}H = tritium$
 - "heavy water" = H₂O (with ²H, instead of ¹H)
 - Carbon: ¹²C (~99%), ¹³C (~1%), ¹⁴C
 - Radioactive Isotopes sometimes get an "*" e.g., ³H* or ³²P*

Some Medical Uses for ISOTOPES

Low Level Radiation:

MRI, CT, Nuclear Medicine

High Level Radiation

- -Radiation can kill cancer cell
- -Radiation can preserve food longer

ELECTRONS

- Atoms ALWAYS have <u>as many electrons as protons</u>
- Opposite charges balance leaving atom neutral
- Electrons are attracted to the positive nucleus
 - Revolve around nucleus in orbitals
 - Can be pushed into higher orbitals with energy
 - Release that energy when they fall back to lower orbital
 - Different <u>energy levels</u> referred to as electron shells
- Bonds between atoms are caused by electrons in outermost shells (called valence shells)

The Octet Rule for Distribution of Electrons

- Bohr models show electron shells as concentric circles around nucleus
 - Each shell has two or more electron orbitals
 - Innermost shell has two orbitals
 - Others have 8 or multiples thereof
- The outermost electron shell determines the reactivity of the element
 - If 3 or less Tendency to donate electrons
 - If 5 or more Tendency to receive electrons

PERIODIC TABLE – Octet Rule

Elements grouped in periodic table based on characteristics

- Vertical columns = groups; chemically similar (same number of valence electrons)
- Horizontal rows = periods; larger and larger (more and more elctrons)
- Atomic mass increases as you move down a group or across a period.

Oxidation-Reduction

- Oxidation-reduction (redox) reactions:
 - Electrons pass from one molecule to another
 - The molecule that loses an electron is oxidized
 - The molecule that gains an electron is *reduced*
 - Both take place at same time: One molecule accepts the electron given up by the other
- Oxidation = loss of electrons
- Reduction = gain of electrons
 - Tip think "reduction" of charge number
- Other rules of Redox
 - Gain of O = oxidation, loss of O = reduction
 - Gain of H = reduction, loss of H = oxidation
 - Tip the "H" always goes with the e⁻'s
 - This is because, in redox, the e⁻'s are passed as a hydride ion (H⁻)

Examples

<u>9-3</u>

- Chemical reactions lead to new arrangements of atoms
- The starting molecules of a chemical reaction are called reactants
- The final molecules of a chemical reaction are called products

Energy

- Energy is the capacity to cause change ("ability to do work")
- Things tend to flow from <u>high to low</u> energy: High energy = unstable, low energy = stable
- Forms of Energy
 - Kinetic:
 - Energy of motion
 - Mechanical
 - Potential:
 - Stored energy
 - Chemical
- Potential energy is the energy that matter has because of its location or structure

Exergonic and Endergonic Reactions

 $\Delta G = -686 \text{ kcal/mol } !!!!!!!!!$

+ $6O_2 \rightarrow 6CO_2$ +

Exergonic Reactions - Products have less free energy than reactants => energy is released reaction is spontaneous

-becomes reduced

6H₂O +

Exothermic – energy is released as heat

becomes oxidized

 $C_{6}H_{12}O_{6}$

- Endergonic Reactions Products have more free energy than reactants => Energy is necessary
 - Endothermic energy is absorbed as heat

Energy

Energy of Activation and Enzymes

- Reactants often "reluctant" to participate in reaction
 - Energy must be added to at least one reactant to initiate the reaction
 - Energy of activation (Ea)
 - Catalysts operate by lowering the energy of activation
- Enzymes:
 - are Organic Catalysts
 - Enzyme Lower (Ea) by bringing the substrates into contact with one another

Energy of Activation

Enzymatic Actions

